Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Neuroanat ; 5: 17, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21629828

RESUMO

Recent advances in high-throughput technology facilitate massive data collection and sharing, enabling neuroscientists to explore the brain across a large range of spatial scales. One such form of high-throughput data collection is the construction of large-scale mosaic volumes using light microscopy (Chow et al., 2006; Price et al., 2006). With this technology, researchers can collect and analyze high-resolution digitized volumes of whole brain sections down to 0.2 µm. However, until recently, scientists lacked the tools to easily handle these large high-resolution datasets. Furthermore, artifacts resulting from specimen preparation limited volume reconstruction using this technique to only a single tissue section. In this paper, we carefully describe the steps we used to digitally reconstruct a series of consecutive mouse brain sections labeled with three stains, a stain for blood vessels (DiI), a nuclear stain (TO-PRO-3), and a myelin stain (FluoroMyelin). These stains label important neuroanatomical landmarks that are used for stacking the serial sections during reconstruction. In addition, we show that the use of two software applications, ir-Tweak and Mogrifier, in conjunction with a volume flattening procedure enable scientists to adeptly work with digitized volumes despite tears and thickness variations within tissue sections. These applications make processing large-scale brain mosaics more efficient. When used in combination with new database resources, these brain maps should allow researchers to extend the lifetime of their specimens indefinitely by preserving them in digital form, making them available for future analyses as our knowledge in the field of neuroscience continues to expand.

2.
Appl Radiat Isot ; 67(5): 667-71, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19264497

RESUMO

For more than 20 years, countries and their agencies which monitor radionuclide discharge sites and storage facilities have relied on the National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 4355 Peruvian Soil. Its low fallout contamination makes it an ideal soil blank for measurements associated with terrestrial-pathway-to-man studies. Presently, SRM 4355 is out of stock, and a new batch of the Peruvian soil is currently under development as future NIST SRM 4355A. Both environmental radioanalytical laboratories and mass spectrometry communities will benefit from the use of this SRM. The former must assess their laboratory procedural contamination and measurement detection limits by measurement of blank sample material. The Peruvian Soil is so low in anthropogenic radionuclide content that it is a suitable virtual blank. On the other hand, mass spectrometric laboratories have high sensitivity instruments that are capable of quantitative isotopic measurements at low plutonium levels in the SRM 4355 (first Peruvian Soil SRM) that provided the mass spectrometric community with the calibration, quality control, and testing material needed for methods development and legal defensibility. The quantification of the ultra-low plutonium content in the SRM 4355A was a considerable challenge for the mass spectrometric laboratories. Careful blank control and correction, isobaric interferences, instrument stability, peak assessment, and detection assessment were necessary. Furthermore, a systematic statistical evaluation of the measurement results and considerable discussions with the mass spectroscopy metrologists were needed to derive the certified values and uncertainties. The one sided upper limit of the 95% tolerance with 95% confidence for the massic (239)Pu content in SRM 4355A is estimated to be 54,000 atoms/g.


Assuntos
Plutônio/normas , Poluentes Radioativos do Solo/normas , Espectrometria de Massas , Peru , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA