Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Zool A Ecol Integr Physiol ; 341(5): 563-577, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38470019

RESUMO

Future climate change scenarios project that the increase in surface temperatures will affect ocean temperatures, inducing shifts in marine biodiversity. Sea turtles are species that are particularly vulnerable to the effects of climate change because temperature is a factor that influences embryonic development. We collected clutches of olive ridley turtles from a mass-nesting beach in the Mexican Pacific, which were incubated in ex situ conditions. When the hatchlings emerged, we measured the body condition index-which evaluates the weight-length relationship-and swim thrust, both were considered traits associated with fitness, termed "fitness proxies," and evaluated the effects of incubation temperature, maternal effects, and paternity on these fitness proxies. The body condition index was correlated positively and significantly with the arribada month and temperature during the last third of the incubation period but showed an inverse relationship with the maternal effect. While swim thrust was positively correlated with the maternal effect and the arribada month, there was an inverse relationship with incubation temperature during the first third of the period. Paternity, whether single or multiple, did not have a significant effect on either fitness proxies; however, it may have effects on the average fitness of a population of hatchlings. These results underscore the need to expand research on the sublethal effects of high incubation temperatures on the adaptation and survival of sea turtles, particularly in scenarios of rapid climate change.


Assuntos
Temperatura , Tartarugas , Animais , Tartarugas/fisiologia , Feminino , México , Masculino , Mudança Climática , Oceano Pacífico , Comportamento de Nidação/fisiologia
2.
PLoS One ; 14(10): e0222997, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31574129

RESUMO

The recent expansion of the invasive lionfish throughout the Western Hemisphere is one of the most extensively studied aquatic invasions. Molecular studies have improved our understanding of larval dispersal, connectivity, and biogeographical barriers among lionfish populations, but none have included Mexican localities, an important area for the larval dispersal of Pterois volitans through the Western Caribbean and the Gulf of Mexico. Here, we present a genetic analysis of lionfishes collected along Mexican coasts, examining their connectivity with other Caribbean localities (Belize, Cuba, Puerto Rico) and the role of ocean currents on population structure. We collected 213 lionfish samples from seven locations comprising four countries. To evaluate genetic structure, mitochondrial control region and nuclear inter-simple sequence repeat markers were used. We found that lionfish collected along Mexican coasts show a similar haplotype composition (H02 followed by H01 and H04) to other Caribbean locations, and the H03 rare haplotype was not found. Haplotype composition in the southwest Gulf of Mexico suggests a discontinuity between the southern and northern areas of the Gulf of Mexico. The southern area clustered more strongly to the Caribbean region, and this is supported by the complexity of water circulation in the semi-enclosed region of the Gulf of Mexico. Mitochondrial genetic diversity parameters show small values, whereas nuclear markers produce medium to high values. Only nuclear markers highlighted significant genetic differentiation between the southwest Gulf of Mexico and Caribbean region, confirming a phylogeographic break between both regions. Separate analysis of Caribbean locations indicates restricted larval exchange between southern and northern regions of the Mesoamerican Barrier Reef System, potentially in response to regional oceanographic circulation.


Assuntos
Espécies Introduzidas , Repetições de Microssatélites/genética , Perciformes/genética , Animais , Belize , Região do Caribe , Cuba , Golfo do México , México , Filogeografia , Porto Rico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA