Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 178(1): 216-228.e21, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31204103

RESUMO

The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Adolescente , Adulto , Animais , Sítios de Ligação , Proteínas de Transporte/imunologia , Reações Cruzadas/imunologia , Epitopos/imunologia , Feminino , Células HEK293 , Voluntários Saudáveis , Humanos , Malária Falciparum/parasitologia , Masculino , Merozoítos/fisiologia , Pessoa de Meia-Idade , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/imunologia , Coelhos , Ratos , Ratos Sprague-Dawley , Adulto Jovem
2.
N Engl J Med ; 374(17): 1635-46, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25629663

RESUMO

BACKGROUND: The West African outbreak of Ebola virus disease that peaked in 2014 has caused more than 11,000 deaths. The development of an effective Ebola vaccine is a priority for control of a future outbreak. METHODS: In this phase 1 study, we administered a single dose of the chimpanzee adenovirus 3 (ChAd3) vaccine encoding the surface glycoprotein of Zaire ebolavirus (ZEBOV) to 60 healthy adult volunteers in Oxford, United Kingdom. The vaccine was administered in three dose levels--1×10(10) viral particles, 2.5×10(10) viral particles, and 5×10(10) viral particles--with 20 participants in each group. We then assessed the effect of adding a booster dose of a modified vaccinia Ankara (MVA) strain, encoding the same Ebola virus glycoprotein, in 30 of the 60 participants and evaluated a reduced prime-boost interval in another 16 participants. We also compared antibody responses to inactivated whole Ebola virus virions and neutralizing antibody activity with those observed in phase 1 studies of a recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) to determine relative potency and assess durability. RESULTS: No safety concerns were identified at any of the dose levels studied. Four weeks after immunization with the ChAd3 vaccine, ZEBOV-specific antibody responses were similar to those induced by rVSV-ZEBOV vaccination, with a geometric mean titer of 752 and 921, respectively. ZEBOV neutralization activity was also similar with the two vaccines (geometric mean titer, 14.9 and 22.2, respectively). Boosting with the MVA vector increased virus-specific antibodies by a factor of 12 (geometric mean titer, 9007) and increased glycoprotein-specific CD8+ T cells by a factor of 5. Significant increases in neutralizing antibodies were seen after boosting in all 30 participants (geometric mean titer, 139; P<0.001). Virus-specific antibody responses in participants primed with ChAd3 remained positive 6 months after vaccination (geometric mean titer, 758) but were significantly higher in those who had received the MVA booster (geometric mean titer, 1750; P<0.001). CONCLUSIONS: The ChAd3 vaccine boosted with MVA elicited B-cell and T-cell immune responses to ZEBOV that were superior to those induced by the ChAd3 vaccine alone. (Funded by the Wellcome Trust and others; ClinicalTrials.gov number, NCT02240875.).


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Adenovirus dos Símios/imunologia , Adulto , Animais , Anticorpos Antivirais/sangue , Linfócitos B/fisiologia , Citocinas/sangue , Vacinas contra Ebola/administração & dosagem , Feminino , Doença pelo Vírus Ebola/imunologia , Humanos , Imunidade Celular , Imunização Secundária , Masculino , Pessoa de Meia-Idade , Pan troglodytes , Linfócitos T/fisiologia , Vacínia , Adulto Jovem
3.
Malar J ; 18(1): 300, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477111

RESUMO

BACKGROUND: The ability to report vaccine-induced IgG responses in terms of µg/mL, as opposed arbitrary units (AU), enables a more informed interpretation of the magnitude of the immune response, and better comparison between vaccines targeting different antigens. However, these interpretations rely on the accuracy of the methodology, which is used to generate ELISA data in µg/mL. In a previous clinical trial of a vaccine targeting the apical membrane antigen 1 (AMA1) from Plasmodium falciparum, three laboratories (Oxford, NIH and WRAIR) reported ELISA data in µg/mL that were correlated but not concordant. This current study sought to harmonize the methodology used to generate a conversion factor (CF) for ELISA analysis of human anti-AMA1 IgG responses across the three laboratories. METHODS: Purified IgG was distributed to the three laboratories and, following a set protocol provided by NIH, AMA1-specific human IgG was affinity purified. A new "harmonized CF" was generated by each laboratory using their in-house ELISA, and the original clinical trial ELISA data were re-analysed accordingly. RESULTS: Statistical analysis showed that the data remained highly correlated across all three laboratories, although only Oxford and NIH were able to harmonize their CF for ELISA and generate concordant data. CONCLUSIONS: This study enabled two out of the three laboratories to harmonize their µg/mL readouts for the human anti-AMA1 IgG ELISA, but results reported from WRAIR are ~ twofold higher. Given the need to validate such information for each species and antigen of interest, it is important to bear in mind these likely differences when interpreting µg/mL ELISA data in the future.


Assuntos
Anticorpos Antiprotozoários/análise , Técnicas de Laboratório Clínico/normas , Ensaio de Imunoadsorção Enzimática/normas , Imunoglobulina G/análise , Vacinas Antimaláricas/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Ensaios Clínicos como Assunto , Humanos , Imunoglobulina G/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia
4.
Biochemistry ; 57(12): 1880-1892, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29485857

RESUMO

There are currently no clinically available inhibitors of metallo-ß-lactamases (MBLs), enzymes that hydrolyze ß-lactam antibiotics and confer resistance to Gram-negative bacteria. Here we present 6-phosphonomethylpyridine-2-carboxylates (PMPCs) as potent inhibitors of subclass B1 (IMP-1, VIM-2, and NDM-1) and B3 (L1) MBLs. Inhibition followed a competitive, slow-binding model without an isomerization step (IC50 values of 0.3-7.2 µM; Ki values of 0.03-1.5 µM). Minimum inhibitory concentration assays demonstrated potentiation of ß-lactam (Meropenem) activity against MBL-producing bacteria, including clinical isolates, at concentrations at which eukaryotic cells remain viable. Crystal structures revealed unprecedented modes of binding of inhibitor to B1 (IMP-1) and B3 (L1) MBLs. In IMP-1, binding does not replace the nucleophilic hydroxide, and the PMPC carboxylate and pyridine nitrogen interact closely (2.3 and 2.7 Å, respectively) with the Zn2 ion of the binuclear metal site. The phosphonate group makes limited interactions but is 2.6 Å from the nucleophilic hydroxide. Furthermore, the presence of a water molecule interacting with the PMPC phosphonate and pyridine N-C2 π-bond, as well as the nucleophilic hydroxide, suggests that the PMPC binds to the MBL active site as its hydrate. Binding is markedly different in L1, with the phosphonate displacing both Zn2, forming a monozinc enzyme, and the nucleophilic hydroxide, while also making multiple interactions with the protein main chain and Zn1. The carboxylate and pyridine nitrogen interact with Ser221 and -223, respectively (3 Å distance). The potency, low toxicity, cellular activity, and amenability to further modification of PMPCs indicate these and similar phosphonate compounds can be further considered for future MBL inhibitor development.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Inibidores de beta-Lactamases/química , beta-Lactamases/química
5.
J Infect Dis ; 213(11): 1743-51, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26908756

RESUMO

BACKGROUND: Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has generally relied on larger-scale phase 2b field trials in malaria-endemic populations. We report the use of a blood-stage P. falciparum CHMI model to assess blood-stage vaccine candidates, using their impact on the parasite multiplication rate (PMR) as the primary efficacy end point. METHODS: Fifteen healthy United Kingdom adult volunteers were vaccinated with FMP2.1, a protein vaccine that is based on the 3D7 clone sequence of apical membrane antigen 1 (AMA1) and formulated in Adjuvant System 01 (AS01). Twelve vaccinees and 15 infectivity controls subsequently underwent blood-stage CHMI. Parasitemia was monitored by quantitative real-time polymerase chain reaction (PCR) analysis, and PMR was modeled from these data. RESULTS: FMP2.1/AS01 elicited anti-AMA1 T-cell and serum antibody responses. Analysis of purified immunoglobulin G showed functional growth inhibitory activity against P. falciparum in vitro. There were no vaccine- or CHMI-related safety concerns. All volunteers developed blood-stage parasitemia, with no impact of the vaccine on PMR. CONCLUSIONS: FMP2.1/AS01 demonstrated no efficacy after blood-stage CHMI. However, the model induced highly reproducible infection in all volunteers and will accelerate proof-of-concept testing of future blood-stage vaccine candidates. CLINICAL TRIALS REGISTRATION: NCT02044198.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adulto , ELISPOT , Eritrócitos/parasitologia , Feminino , Humanos , Imunogenicidade da Vacina , Estágios do Ciclo de Vida , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Plasmodium falciparum/fisiologia , Adulto Jovem
6.
Biochim Biophys Acta ; 1850(11): 2228-38, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26238337

RESUMO

BACKGROUND: Metallo-ß-lactamases (MBLs) play an important role in the emergence of microbial resistance to ß-lactam antibiotics, and are hence considered targets for the design of novel therapeutics. We here report on the inhibitory effect of peptides containing multiple arginine residues on VIM-2, a clinically important MBL from Pseudomonas aeruginosa. METHODS: Enzyme kinetic assays in combination with fluorescence spectroscopy and stopped-flow UV-Vis spectrophotometry were utilized to explore the structure-activity relationship of peptides as inhibitors of VIM-2. RESULTS: Our studies show that the inhibitory potency of the investigated peptides was mainly dependent on the number of arginine residues in the center of the peptide sequence, and on the composition of the N-terminus. The most potent inhibitors were found to curtail enzyme function in the mid-to-low nanomolar range. Salts generally reduced peptide-mediated inhibition. Analysis of the mode of inhibition suggests the peptides to act as mixed-type inhibitors with a higher affinity for the enzyme-substrate complex. Stopped-flow UV-Vis and fluorescence studies revealed the peptides to induce rapid protein aggregation, a phenomenon strongly correlated to the peptides' inhibitory potency. Inhibition of IMP-1 (another subclass B1 MBL) by the peptides was found to be much weaker than that observed with VIM-2, a finding which might be related to subtle molecular differences in the protein surfaces. CONCLUSION: The reported data indicate that arginine-containing peptides can serve as potent, aggregation-inducing inhibitors of VIM-2, and potentially of other MBLs. GENERAL SIGNIFICANCE: Arginine-containing peptides can be considered as a novel type of potent MBL inhibitors.


Assuntos
Peptídeos/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases , Arginina , Agregados Proteicos , Relação Estrutura-Atividade , beta-Lactamases/química
7.
Anal Biochem ; 486: 75-7, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26142222

RESUMO

We report on the synthesis of three nitrocefin analogues and their evaluation as substrates for the detection of ß-lactamase activity. These compounds are hydrolyzed by all four Ambler classes of ß-lactamases. Kinetic parameters were determined with eight different ß-lactamases, including VIM-2, NDM-1, KPC-2, and SPM-1. The compounds do not inhibit the growth of clinically important antibiotic-resistant gram-negative bacteria in vitro. These chromogenic compounds have a distinct absorbance spectrum and turn purple when hydrolyzed by ß-lactamases. One of these compounds, UW154, is easier to synthesize from commercial starting materials than nitrocefin and should be significantly less expensive to produce.


Assuntos
Cefalosporinas/síntese química , Cefalosporinas/metabolismo , beta-Lactamases/metabolismo , Biocatálise , Cefalosporinas/química , Técnicas de Química Sintética , Avaliação Pré-Clínica de Medicamentos , Hidrólise , Cinética
8.
Microbiol Spectr ; 11(6): e0076123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37815347

RESUMO

IMPORTANCE: Molecular tests like polymerase chain reaction were widely used during the COVID-19 pandemic but as the pandemic evolved, so did SARS-CoV-2. This virus acquired mutations, prompting concerns that mutations could compromise molecular test results and be falsely negative. While some manufacturers may have in-house programs for monitoring mutations that could impact their assay performance, it is important to promptly report mutations in circulating viral strains that could adversely impact a diagnostic test result. However, commercial test target sites are proprietary, making independent monitoring difficult. In this study, SARS-CoV-2 test target sites were sequenced to monitor and assess mutations impact, and 29 novel mutations impacting SARS-CoV-2 detection were identified. This framework for molecular test target site quality assurance could be adapted to any molecular test, ensuring accurate diagnostic test results and disease diagnoses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Teste para COVID-19 , Pandemias , Técnicas de Laboratório Clínico/métodos , Técnicas de Amplificação de Ácido Nucleico
9.
Protein Expr Purif ; 80(2): 224-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21763425

RESUMO

Fructose 1,6-bisphosphate (FBP) aldolase has been used as biocatalyst in the synthesis of several pharmaceutical compounds such as monosaccharides and analogs. Is has been suggested that microbial metal-dependant Class II aldolases could be better industrial catalysts than mammalian Class I enzyme because of their greater stability. The Class II aldolases from four microbes were subcloned into the Escherichia coli vector pT7-7, expressed and purified to near homogeneity. The kinetic parameters, temperature stability, pH profile, and tolerance to organic solvents of the Class II enzymes were determined, and compared with the properties of the Class I aldolase from rabbit muscle. Contrary to results obtained previously with the E. coli Class II aldolase, which was reported to be more stable than the mammalian enzyme, other recombinant Class II aldolases were found to be generally less stable than the Class I enzyme, especially in the presence of organic solvents. Class II aldolase from Bacillus cereus showed higher temperature stability than the other enzymes tested, but only the Mycobacterium tuberculosis Class II aldolase had a stability comparable to the Class I mammalian enzyme under assay conditions. The turnover number of the recombinant M. tuberculosis and Magnaporthe grisea Class II type A aldolases was comparable or higher than that of the Class I enzyme. The recombinant B. cereus and Pseudomonas aeruginosa Class II type B aldolases had very low turnover numbers and low metal content, indicating that the E. coli overexpression system may not be suitable for the Class II type B aldolases from these microorganisms.


Assuntos
Bacillus cereus/enzimologia , Frutose-Bifosfato Aldolase/metabolismo , Magnaporthe/enzimologia , Mycobacterium tuberculosis/enzimologia , Pseudomonas aeruginosa/enzimologia , Animais , Bacillus cereus/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Cromatografia por Troca Iônica , Clonagem Molecular , Ativação Enzimática , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Frutose-Bifosfato Aldolase/isolamento & purificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Bacterianos , Glicerolfosfato Desidrogenase/metabolismo , Concentração de Íons de Hidrogênio , Magnaporthe/genética , Espectrometria de Massas , Peso Molecular , Músculos/enzimologia , Mycobacterium tuberculosis/genética , Estabilidade Proteica , Pseudomonas aeruginosa/genética , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Solventes/metabolismo , Temperatura , Triose-Fosfato Isomerase/metabolismo
10.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414281

RESUMO

Here, we report the complete genome sequences for 36 Canadian isolates of Salmonella enterica subsp. enterica serovar Typhimurium and its monophasic variant I 1,4,[5]:12:i:- from both clinical and animal sources. These genome sequences will provide useful references for understanding the genetic variation within this prominent serotype.

11.
Front Immunol ; 12: 720550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733274

RESUMO

Targeted delivery of antigen to antigen presenting cells (APCs) is an efficient way to induce robust antigen-specific immune responses. Here, we present a novel DNA vaccine that targets the Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5), a leading blood-stage antigen of the human malaria pathogen, to APCs. The vaccine is designed as bivalent homodimers where each chain is composed of an amino-terminal single chain fragment variable (scFv) targeting unit specific for major histocompatibility complex class II (MHCII) expressed on APCs, and a carboxyl-terminal antigenic unit genetically linked by the dimerization unit. This vaccine format, named "Vaccibody", has previously been successfully applied for antigens from other infectious diseases including influenza and HIV, as well as for tumor antigens. Recently, the crystal structure and key functional antibody epitopes for the truncated version of PfRH5 (PfRH5ΔNL) were characterized, suggesting PfRH5ΔNL to be a promising candidate for next-generation PfRH5 vaccine design. In this study, we explored the APC-targeting strategy for a PfRH5ΔNL-containing DNA vaccine. BALB/c mice immunized with the targeted vaccine induced higher PfRH5-specific IgG1 antibody responses than those vaccinated with a non-targeted vaccine or antigen alone. The APC-targeted vaccine also efficiently induced rapid IFN-γ and IL-4 T cell responses. Furthermore, the vaccine-induced PfRH5-specific IgG showed inhibition of growth of the P. falciparum 3D7 clone parasite in vitro. Finally, sera obtained after vaccination with this targeted vaccine competed for the same epitopes as PfRH5-specific mAbs from vaccinated humans. Robust humoral responses were also induced by a similar P. vivax Duffy-binding protein (PvDBP)-containing targeted DNA vaccine. Our data highlight a novel targeted vaccine platform for the development of vaccines against blood-stage malaria.


Assuntos
Anticorpos Antiprotozoários/imunologia , Células Apresentadoras de Antígenos/imunologia , Proteínas de Transporte/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Linfócitos T/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos de Protozoários/imunologia , Modelos Animais de Doenças , Epitopos/imunologia , Feminino , Ordem dos Genes , Vetores Genéticos/genética , Imunização , Malária Falciparum/imunologia , Malária Falciparum/metabolismo , Camundongos , Linfócitos T/metabolismo
12.
Microb Genom ; 7(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34554082

RESUMO

Hierarchical genotyping approaches can provide insights into the source, geography and temporal distribution of bacterial pathogens. Multiple hierarchical SNP genotyping schemes have previously been developed so that new isolates can rapidly be placed within pre-computed population structures, without the need to rebuild phylogenetic trees for the entire dataset. This classification approach has, however, seen limited uptake in routine public health settings due to analytical complexity and the lack of standardized tools that provide clear and easy ways to interpret results. The BioHansel tool was developed to provide an organism-agnostic tool for hierarchical SNP-based genotyping. The tool identifies split k-mers that distinguish predefined lineages in whole genome sequencing (WGS) data using SNP-based genotyping schemes. BioHansel uses the Aho-Corasick algorithm to type isolates from assembled genomes or raw read sequence data in a matter of seconds, with limited computational resources. This makes BioHansel ideal for use by public health agencies that rely on WGS methods for surveillance of bacterial pathogens. Genotyping results are evaluated using a quality assurance module which identifies problematic samples, such as low-quality or contaminated datasets. Using existing hierarchical SNP schemes for Mycobacterium tuberculosis and Salmonella Typhi, we compare the genotyping results obtained with the k-mer-based tools BioHansel and SKA, with those of the organism-specific tools TBProfiler and genotyphi, which use gold-standard reference-mapping approaches. We show that the genotyping results are fully concordant across these different methods, and that the k-mer-based tools are significantly faster. We also test the ability of the BioHansel quality assurance module to detect intra-lineage contamination and demonstrate that it is effective, even in populations with low genetic diversity. We demonstrate the scalability of the tool using a dataset of ~8100 S. Typhi public genomes and provide the aggregated results of geographical distributions as part of the tool's output. BioHansel is an open source Python 3 application available on PyPI and Conda repositories and as a Galaxy tool from the public Galaxy Toolshed. In a public health context, BioHansel enables rapid and high-resolution classification of bacterial pathogens with low genetic diversity.


Assuntos
Bactérias/genética , Técnicas de Tipagem Bacteriana/métodos , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Bactérias/classificação , Bactérias/isolamento & purificação , Variação Genética , Genoma Bacteriano , Genótipo , Epidemiologia Molecular/métodos , Mycobacterium tuberculosis/genética , Filogenia , Salmonella/genética , Software , Sequenciamento Completo do Genoma
13.
JCI Insight ; 6(23)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34609964

RESUMO

Controlled human malaria infection (CHMI) provides a highly informative means to investigate host-pathogen interactions and enable in vivo proof-of-concept efficacy testing of new drugs and vaccines. However, unlike Plasmodium falciparum, well-characterized P. vivax parasites that are safe and suitable for use in modern CHMI models are limited. Here, 2 healthy malaria-naive United Kingdom adults with universal donor blood group were safely infected with a clone of P. vivax from Thailand by mosquito-bite CHMI. Parasitemia developed in both volunteers, and prior to treatment, each volunteer donated blood to produce a cryopreserved stabilate of infected RBCs. Following stringent safety screening, the parasite stabilate from one of these donors (PvW1) was thawed and used to inoculate 6 healthy malaria-naive United Kingdom adults by blood-stage CHMI, at 3 different dilutions. Parasitemia developed in all volunteers, who were then successfully drug treated. PvW1 parasite DNA was isolated and sequenced to produce a high-quality genome assembly by using a hybrid assembly method. We analyzed leading vaccine candidate antigens and multigene families, including the vivax interspersed repeat (VIR) genes, of which we identified 1145 in the PvW1 genome. Our genomic analysis will guide future assessment of candidate vaccines and drugs, as well as experimental medicine studies.


Assuntos
Genoma/genética , Malária Falciparum/genética , Animais , Voluntários Saudáveis , Humanos , Masculino , Plasmodium vivax
14.
J Med Entomol ; 47(6): 1092-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21175058

RESUMO

Behavioral responses of Aedes aegypti male populations developed for Release of Insects Carrying a Dominant Lethal (RIDL) technology and a Malaysian wild-type population of two age groups (4-5 and 8-10 d old) were tested under laboratory conditions against chemical irritants and repellents using the high-throughput screening system device. Results indicate that all male Ae. aegypti test populations showed significant (P < 0.01) behavioral escape responses when exposed to alphacypermethrin, DDT, and deltamethrin at the test dose of 25 nmol/cm2. In addition, all populations showed significant (P < 0.05) spatial repellent responses to DDT, whereas alphacypermethrin and deltamethrin elicited no directional movement in the assay. These data suggest that genetic modification has not suppressed expected irritancy and repellency behavior. Age effects were minimal in both contact irritant and spatial repellent assays. The magnitude of irritant response, based on percentage responding, was stronger in the RIDL test cohorts as compared with the wild-type Malaysian population, but the impact, if any, that this increased behavioral sensitivity might have on the success of a RIDL strategy has yet to be defined. Information of the type reported in the current study is vital in defining the effects of genetic modification on vector behavior and understanding how these behaviors may influence the success of RIDL technology as they relate to other vector control interventions implemented in the same disease-endemic locale.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Comportamento Animal/fisiologia , Repelentes de Insetos/farmacologia , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Envelhecimento , Animais , Masculino
15.
J Microbiol Methods ; 157: 81-87, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30592979

RESUMO

We report a novel RNase H2-dependent PCR (rhPCR) genotyping assay for a small number of discriminatory single-nucleotide polymorphisms (SNPs) that identify lineages and sub-lineages of the highly clonal pathogen Salmonella Heidelberg (SH). Standard PCR primers targeting numerous SNP locations were initially designed in silico, modified to be RNase H2-compatible, and then optimized by laboratory testing. Optimization often required repeated cycling through variations in primer design, assay conditions, reagent concentrations and selection of alternative SNP targets. The final rhPCR assay uses 28 independent rhPCR reactions to target 14 DNA bases that can distinguish 15 possible lineages and sub-lineages of SH. On evaluation, the assay correctly identified the 12 lineages and sub-lineages represented in a panel of 75 diverse SH strains. Non-specific amplicons were observed in 160 (15.2%) of the 1050 reactions, but due to their low intensity did not compromise assay performance. Furthermore, in silico analysis of 500 closed genomes from 103 Salmonella serovars and laboratory rhPCR testing of five prevalent Salmonella serovars including SH indicated the assay can identify Salmonella isolates as SH, since only SH isolates generated amplicons from all 14 target SNPs. The genotyping results can be fully correlated with whole genome sequencing (WGS) data in silico. This fast and economical assay, which can identify SH isolates and classify them into related or unrelated lineages and sub-lineages, has potential applications in outbreak identification, source attribution and microbial source tracking.


Assuntos
Técnicas de Genotipagem/métodos , Tipagem Molecular/métodos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único/genética , Salmonella enterica/genética , Genoma Bacteriano/genética , Humanos , Ribonucleases/metabolismo , Infecções por Salmonella/microbiologia
16.
Front Immunol ; 10: 1254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214195

RESUMO

The malaria genome encodes over 5,000 proteins and many of these have also been proposed to be potential vaccine candidates, although few of these have been tested clinically. RH5 is one of the leading blood-stage Plasmodium falciparum malaria vaccine antigens and Phase I/II clinical trials of vaccines containing this antigen are currently underway. Its likely mechanism of action is to elicit antibodies that can neutralize merozoites by blocking their invasion of red blood cells (RBC). However, many other antigens could also elicit neutralizing antibodies against the merozoite, and most of these have never been compared directly to RH5. The objective of this study was to compare a range of blood-stage antigens to RH5, to identify any antigens that outperform or synergize with anti-RH5 antibodies. We selected 55 gene products, covering 15 candidate antigens that have been described in the literature and 40 genes selected on the basis of bioinformatics functional prediction. We were able to make 20 protein-in-adjuvant vaccines from the original selection. Of these, S-antigen and CyRPA robustly elicited antibodies with neutralizing properties. Anti-CyRPA IgG generally showed additive GIA with anti-RH5 IgG, although high levels of anti-CyRPA-specific rabbit polyclonal IgG were required to achieve 50% GIA. Our data suggest that further vaccine antigen screening efforts are required to identify a second merozoite target with similar antibody-susceptibility to RH5.


Assuntos
Eritrócitos/imunologia , Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Merozoítos/imunologia , Plasmodium falciparum/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Especificidade de Anticorpos/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Feminino , Humanos , Imunoglobulina G/imunologia , Malária Falciparum/prevenção & controle , Camundongos , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Polimorfismo Genético , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia
17.
Cell Rep ; 27(1): 172-186.e7, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30943399

RESUMO

We describe therapeutic monoclonal antibodies isolated from human volunteers vaccinated with recombinant adenovirus expressing Ebola virus glycoprotein (EBOV GP) and boosted with modified vaccinia virus Ankara. Among 82 antibodies isolated from peripheral blood B cells, almost half neutralized GP pseudotyped influenza virus. The antibody response was diverse in gene usage and epitope recognition. Although close to germline in sequence, neutralizing antibodies with binding affinities in the nano- to pico-molar range, similar to "affinity matured" antibodies from convalescent donors, were found. They recognized the mucin-like domain, glycan cap, receptor binding region, and the base of the glycoprotein. A cross-reactive cocktail of four antibodies, targeting the latter three non-overlapping epitopes, given on day 3 of EBOV infection, completely protected guinea pigs. This study highlights the value of experimental vaccine trials as a rich source of therapeutic human monoclonal antibodies.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Vacinas contra Ebola/isolamento & purificação , Vacinas contra Ebola/uso terapêutico , Ebolavirus/imunologia , Doença pelo Vírus Ebola/terapia , Vacinação , Adolescente , Adulto , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/sangue , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/uso terapêutico , Células Cultivadas , Cães , Feminino , Cobaias , Células HEK293 , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/imunologia , Humanos , Células Madin Darby de Rim Canino , Masculino , Pessoa de Meia-Idade , Vacinação/métodos , Adulto Jovem
18.
Nat Microbiol ; 4(9): 1497-1507, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31133755

RESUMO

The most widespread form of malaria is caused by Plasmodium vivax. To replicate, this parasite must invade immature red blood cells through a process requiring interaction of the P. vivax Duffy binding protein (PvDBP) with its human receptor, the Duffy antigen receptor for chemokines. Naturally acquired antibodies that inhibit this interaction associate with clinical immunity, suggesting PvDBP as a leading candidate for inclusion in a vaccine to prevent malaria due to P. vivax. Here, we isolated a panel of monoclonal antibodies from human volunteers immunized in a clinical vaccine trial of PvDBP. We screened their ability to prevent PvDBP from binding to the Duffy antigen receptor for chemokines, and their capacity to block red blood cell invasion by a transgenic Plasmodium knowlesi parasite genetically modified to express PvDBP and to prevent reticulocyte invasion by multiple clinical isolates of P. vivax. This identified a broadly neutralizing human monoclonal antibody that inhibited invasion of all tested strains of P. vivax. Finally, we determined the structure of a complex of this antibody bound to PvDBP, indicating the molecular basis for inhibition. These findings will guide future vaccine design strategies and open up possibilities for testing the prophylactic use of such an antibody.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Anticorpos Antiprotozoários/química , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Cristalografia por Raios X , Sistema do Grupo Sanguíneo Duffy/metabolismo , Epitopos de Linfócito B , Eritrócitos/parasitologia , Variação Genética , Humanos , Fragmentos Fab das Imunoglobulinas , Vacinas Antimaláricas/administração & dosagem , Malária Vivax/parasitologia , Plasmodium knowlesi/genética , Plasmodium knowlesi/crescimento & desenvolvimento , Plasmodium knowlesi/imunologia , Plasmodium vivax/genética , Plasmodium vivax/crescimento & desenvolvimento , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Reticulócitos/parasitologia
19.
PLoS One ; 13(2): e0192233, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29401524

RESUMO

Salmonella enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. The core genome single nucleotide variant pipeline (cgSNV) is one of several whole genome based sequence typing methods used for the laboratory investigation of foodborne pathogens. SNV detection using this method requires a reference genome. The purpose of this study was to investigate the impact of the choice of the reference genome on the cgSNV-informed phylogenetic clustering and inferred isolate relationships. We found that using a draft or closed genome of S. Heidelberg as reference did not impact the ability of the cgSNV methodology to differentiate among 145 S. Heidelberg isolates involved in foodborne outbreaks. We also found that using a distantly related genome such as S. Dublin as choice of reference led to a loss in resolution since some sporadic isolates were found to cluster together with outbreak isolates. In addition, the genetic distances between outbreak isolates as well as between outbreak and sporadic isolates were overall reduced when S. Dublin was used as the reference genome as opposed to S. Heidelberg.


Assuntos
Genoma Bacteriano , Polimorfismo de Nucleotídeo Único , Salmonella enterica/genética , Surtos de Doenças , Irlanda/epidemiologia , Filogenia , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Salmonella enterica/classificação
20.
Int J Parasitol ; 47(7): 435-446, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28153778

RESUMO

Development of bespoke biomanufacturing processes remains a critical bottleneck for translational studies, in particular when modest quantities of a novel product are required for proof-of-concept Phase I/II clinical trials. In these instances the ability to develop a biomanufacturing process quickly and relatively cheaply, without risk to product quality or safety, provides a great advantage by allowing new antigens or concepts in immunogen design to more rapidly enter human testing. These challenges with production and purification are particularly apparent when developing recombinant protein-based vaccines for difficult parasitic diseases, with Plasmodium falciparum malaria being a prime example. To that end, we have previously reported the expression of a novel protein vaccine for malaria using the ExpreS2Drosophila melanogaster Schneider 2 stable cell line system, however, a very low overall process yield (typically <5% recovery of hexa-histidine-tagged protein) meant the initial purification strategy was not suitable for scale-up and clinical biomanufacture of such a vaccine. Here we describe a newly available affinity purification method that was ideally suited to purification of the same protein which encodes the P. falciparum reticulocyte-binding protein homolog 5 - currently the leading antigen for assessment in next generation vaccines aiming to prevent red blood cell invasion by the blood-stage parasite. This purification system makes use of a C-terminal tag known as 'C-tag', composed of the four amino acids, glutamic acid - proline - glutamic acid - alanine (E-P-E-A), which is selectively purified on a CaptureSelect™ affinity resin coupled to a camelid single chain antibody, called NbSyn2. The C-terminal fusion of this short C-tag to P. falciparum reticulocyte-binding protein homolog 5 achieved >85% recovery and >70% purity in a single step purification directly from clarified, concentrated Schneider 2 cell supernatant under mild conditions. Biochemical and immunological analysis showed that the C-tagged and hexa-histidine-tagged P. falciparum reticulocyte-binding protein homolog 5 proteins are comparable. The C-tag technology has the potential to form the basis of a current good manufacturing practice-compliant platform, which could greatly improve the speed and ease with which novel protein-based products progress to clinical testing.


Assuntos
Proteínas de Transporte/química , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/metabolismo , Animais , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Clonagem Molecular , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA