Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nature ; 600(7890): 743-747, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34700328

RESUMO

Replisome disassembly is the final step of eukaryotic DNA replication and is triggered by ubiquitylation of the CDC45-MCM-GINS (CMG) replicative helicase1-3. Despite being driven by evolutionarily diverse E3 ubiquitin ligases in different eukaryotes (SCFDia2 in budding yeast1, CUL2LRR1 in metazoa4-7), replisome disassembly is governed by a common regulatory principle, in which ubiquitylation of CMG is suppressed before replication termination, to prevent replication fork collapse. Recent evidence suggests that this suppression is mediated by replication fork DNA8-10. However, it is unknown how SCFDia2 and CUL2LRR1 discriminate terminated from elongating replisomes, to selectively ubiquitylate CMG only after termination. Here we used cryo-electron microscopy to solve high-resolution structures of budding yeast and human replisome-E3 ligase assemblies. Our structures show that the leucine-rich repeat domains of Dia2 and LRR1 are structurally distinct, but bind to a common site on CMG, including the MCM3 and MCM5 zinc-finger domains. The LRR-MCM interaction is essential for replisome disassembly and, crucially, is occluded by the excluded DNA strand at replication forks, establishing the structural basis for the suppression of CMG ubiquitylation before termination. Our results elucidate a conserved mechanism for the regulation of replisome disassembly in eukaryotes, and reveal a previously unanticipated role for DNA in preserving replisome integrity.


Assuntos
Replicação do DNA , Eucariotos , Microscopia Crioeletrônica , DNA/metabolismo , DNA Helicases/metabolismo , Eucariotos/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo
2.
Mol Cell ; 73(5): 915-929.e6, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849395

RESUMO

DNA replication errors generate complex chromosomal rearrangements and thereby contribute to tumorigenesis and other human diseases. One mechanism that triggers these errors is mitotic entry before the completion of DNA replication. To address how mitosis might affect DNA replication, we used Xenopus egg extracts. When mitotic CDK (Cyclin B1-CDK1) is used to drive interphase egg extracts into a mitotic state, the replicative CMG (CDC45/MCM2-7/GINS) helicase undergoes ubiquitylation on its MCM7 subunit, dependent on the E3 ubiquitin ligase TRAIP. Whether replisomes have stalled or undergone termination, CMG ubiquitylation is followed by its extraction from chromatin by the CDC48/p97 ATPase. TRAIP-dependent CMG unloading during mitosis is also seen in C. elegans early embryos. At stalled forks, CMG removal results in fork breakage and end joining events involving deletions and templated insertions. Our results identify a mitotic pathway of global replisome disassembly that can trigger replication fork collapse and DNA rearrangements.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Dano ao DNA , Replicação do DNA , DNA/biossíntese , Rearranjo Gênico , Mitose , Proteínas Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , DNA/genética , Reparo do DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo , DNA Polimerase teta
3.
Mol Cell ; 74(2): 231-244.e9, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30850330

RESUMO

The convergence of two DNA replication forks creates unique problems during DNA replication termination. In E. coli and SV40, the release of torsional strain by type II topoisomerases is critical for converging replisomes to complete DNA synthesis, but the pathways that mediate fork convergence in eukaryotes are unknown. We studied the convergence of reconstituted yeast replication forks that include all core replisome components and both type I and type II topoisomerases. We found that most converging forks stall at a very late stage, indicating a role for additional factors. We showed that the Pif1 and Rrm3 DNA helicases promote efficient fork convergence and completion of DNA synthesis, even in the absence of type II topoisomerase. Furthermore, Rrm3 and Pif1 are also important for termination of plasmid DNA replication in vivo. These findings identify a eukaryotic pathway for DNA replication termination that is distinct from previously characterized prokaryotic mechanisms.


Assuntos
DNA Helicases/genética , Replicação do DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , DNA Topoisomerases/genética , Escherichia coli/genética , Eucariotos/genética , Instabilidade Genômica , Plasmídeos/genética
4.
EMBO J ; 41(5): e109783, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35102600

RESUMO

Nucleosomes are disrupted transiently during eukaryotic transcription, yet the displaced histones must be retained and redeposited onto DNA, to preserve nucleosome density and associated histone modifications. Here, we show that the essential Spt5 processivity factor of RNA polymerase II (Pol II) plays a direct role in this process in budding yeast. Functional orthologues of eukaryotic Spt5 are present in archaea and bacteria, reflecting its universal role in RNA polymerase processivity. However, eukaryotic Spt5 is unique in having an acidic amino terminal tail (Spt5N) that is sandwiched between the downstream nucleosome and the upstream DNA that emerges from Pol II. We show that Spt5N contains a histone-binding motif that is required for viability in yeast cells and prevents loss of nucleosomal histones within actively transcribed regions. These findings indicate that eukaryotic Spt5 combines two essential activities, which together couple processive transcription to the efficient capture and re-deposition of nucleosomal histones.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Histonas/genética , RNA Polimerase II/genética , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/genética , Nucleossomos/genética , Ligação Proteica/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Cell ; 72(1): 140-151.e3, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30244834

RESUMO

Although essential for epigenetic inheritance, the transfer of parental histone (H3-H4)2 tetramers that contain epigenetic modifications to replicating DNA strands is poorly understood. Here, we show that the Mcm2-Ctf4-Polα axis facilitates the transfer of parental (H3-H4)2 tetramers to lagging-strand DNA at replication forks. Mutating the conserved histone-binding domain of the Mcm2 subunit of the CMG (Cdc45-MCM-GINS) DNA helicase, which translocates along the leading-strand template, results in a marked enrichment of parental (H3-H4)2 on leading strand, due to the impairment of the transfer of parental (H3-H4)2 to lagging strands. Similar effects are observed in Ctf4 and Polα primase mutants that disrupt the connection of the CMG helicase to Polα that resides on lagging-strand template. Our results support a model whereby parental (H3-H4)2 complexes displaced from nucleosomes by DNA unwinding at replication forks are transferred by the CMG-Ctf4-Polα complex to lagging-strand DNA for nucleosome assembly at the original location.


Assuntos
DNA Polimerase III/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Epigênese Genética , Histonas/genética , Complexos Multiproteicos/genética , Nucleossomos/genética , Ligação Proteica , Saccharomyces cerevisiae/genética
6.
EMBO J ; 40(17): e108053, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34269473

RESUMO

The eukaryotic replisome is rapidly disassembled during DNA replication termination. In metazoa, the cullin-RING ubiquitin ligase CUL-2LRR-1 drives ubiquitylation of the CMG helicase, leading to replisome disassembly by the p97/CDC-48 "unfoldase". Here, we combine in vitro reconstitution with in vivo studies in Caenorhabditis elegans embryos, to show that the replisome-associated TIMELESS-TIPIN complex is required for CUL-2LRR-1 recruitment and efficient CMG helicase ubiquitylation. Aided by TIMELESS-TIPIN, CUL-2LRR-1 directs a suite of ubiquitylation enzymes to ubiquitylate the MCM-7 subunit of CMG. Subsequently, the UBXN-3 adaptor protein directly stimulates the disassembly of ubiquitylated CMG by CDC-48_UFD-1_NPL-4. We show that UBXN-3 is important in vivo for replisome disassembly in the absence of TIMELESS-TIPIN. Correspondingly, co-depletion of UBXN-3 and TIMELESS causes profound synthetic lethality. Since the human orthologue of UBXN-3, FAF1, is a candidate tumour suppressor, these findings suggest that manipulation of CMG disassembly might be applicable to future strategies for treating human cancer.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multienzimáticos/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , Mutações Sintéticas Letais
7.
EMBO Rep ; 24(11): e57677, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37781960

RESUMO

DONSON is one of 13 genes mutated in a form of primordial microcephalic dwarfism known as Meier-Gorlin syndrome. The other 12 encode components of the CDC45-MCM-GINS helicase, around which the eukaryotic replisome forms, or are factors required for helicase assembly during DNA replication initiation. A role for DONSON in CDC45-MCM-GINS assembly was unanticipated, since DNA replication initiation can be reconstituted in vitro with purified proteins from budding yeast, which lacks DONSON. Using mouse embryonic stem cells as a model for the mammalian helicase, we show that DONSON binds directly but transiently to CDC45-MCM-GINS during S-phase and is essential for chromosome duplication. Rapid depletion of DONSON leads to the disappearance of the CDC45-MCM-GINS helicase from S-phase cells and our data indicate that DONSON is dispensable for loading of the MCM2-7 helicase core onto chromatin during G1-phase, but instead is essential for CDC45-MCM-GINS assembly during S-phase. These data identify DONSON as a missing link in our understanding of mammalian chromosome duplication and provide a molecular explanation for why mutations in human DONSON are associated with Meier-Gorlin syndrome.


Assuntos
Proteínas de Ciclo Celular , Duplicação Cromossômica , Camundongos , Animais , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Replicação do DNA , Proteínas de Manutenção de Minicromossomo/metabolismo , Mamíferos/metabolismo
8.
Mol Cell ; 63(3): 385-96, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27397685

RESUMO

Replisome assembly at eukaryotic replication forks connects the DNA helicase to DNA polymerases and many other factors. The helicase binds the leading-strand polymerase directly, but is connected to the Pol α lagging-strand polymerase by the trimeric adaptor Ctf4. Here, we identify new Ctf4 partners in addition to Pol α and helicase, all of which contain a "Ctf4-interacting-peptide" or CIP-box. Crystallographic analysis classifies CIP-boxes into two related groups that target different sites on Ctf4. Mutations in the CIP-box motifs of the Dna2 nuclease or the rDNA-associated protein Tof2 do not perturb DNA synthesis genome-wide, but instead lead to a dramatic shortening of chromosome 12 that contains the large array of rDNA repeats. Our data reveal unexpected complexity of Ctf4 function, as a hub that connects multiple accessory factors to the replisome. Most strikingly, Ctf4-dependent recruitment of CIP-box proteins couples other processes to DNA synthesis, including rDNA copy-number regulation.


Assuntos
Cromossomos Fúngicos/enzimologia , DNA Helicases/metabolismo , DNA Fúngico/biossíntese , DNA Ribossômico/biossíntese , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Cromossomos Fúngicos/genética , DNA Helicases/genética , DNA Polimerase I/metabolismo , DNA Fúngico/genética , DNA Ribossômico/genética , Proteínas de Ligação a DNA/genética , Dosagem de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Complexos Multiproteicos , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
9.
Mol Cell ; 63(1): 146-55, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27292798

RESUMO

Deubiquitinating enzymes (DUBs) remove ubiquitin (Ub) from Ub-conjugated substrates to regulate the functional outcome of ubiquitylation. Here we report the discovery of a new family of DUBs, which we have named MINDY (motif interacting with Ub-containing novel DUB family). Found in all eukaryotes, MINDY-family DUBs are highly selective at cleaving K48-linked polyUb, a signal that targets proteins for degradation. We identify the catalytic activity to be encoded within a previously unannotated domain, the crystal structure of which reveals a distinct protein fold with no homology to any of the known DUBs. The crystal structure of MINDY-1 (also known as FAM63A) in complex with propargylated Ub reveals conformational changes that realign the active site for catalysis. MINDY-1 prefers cleaving long polyUb chains and works by trimming chains from the distal end. Collectively, our results reveal a new family of DUBs that may have specialized roles in regulating proteostasis.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Evolução Molecular , Poliubiquitina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Enzimas Desubiquitinantes/química , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dobramento de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
10.
EMBO Rep ; 22(3): e52164, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33590678

RESUMO

The eukaryotic replisome is disassembled in each cell cycle, dependent upon ubiquitylation of the CMG helicase. Studies of Saccharomyces cerevisiae, Caenorhabditis elegans and Xenopus laevis have revealed surprising evolutionary diversity in the ubiquitin ligases that control CMG ubiquitylation, but regulated disassembly of the mammalian replisome has yet to be explored. Here, we describe a model system for studying the ubiquitylation and chromatin extraction of the mammalian CMG replisome, based on mouse embryonic stem cells. We show that the ubiquitin ligase CUL2LRR1 is required for ubiquitylation of the CMG-MCM7 subunit during S-phase, leading to disassembly by the p97 ATPase. Moreover, a second pathway of CMG disassembly is activated during mitosis, dependent upon the TRAIP ubiquitin ligase that is mutated in primordial dwarfism and mis-regulated in various cancers. These findings indicate that replisome disassembly in diverse metazoa is regulated by a conserved pair of ubiquitin ligases, distinct from those present in other eukaryotes.


Assuntos
DNA Helicases , Replicação do DNA , Animais , Ciclo Celular/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Camundongos , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Ubiquitinação , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
11.
EMBO J ; 37(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30104407

RESUMO

The eukaryotic replisome disassembles parental chromatin at DNA replication forks, but then plays a poorly understood role in the re-deposition of the displaced histone complexes onto nascent DNA. Here, we show that yeast DNA polymerase α contains a histone-binding motif that is conserved in human Pol α and is specific for histones H2A and H2B. Mutation of this motif in budding yeast cells does not affect DNA synthesis, but instead abrogates gene silencing at telomeres and mating-type loci. Similar phenotypes are produced not only by mutations that displace Pol α from the replisome, but also by mutation of the previously identified histone-binding motif in the CMG helicase subunit Mcm2, the human orthologue of which was shown to bind to histones H3 and H4. We show that chromatin-derived histone complexes can be bound simultaneously by Mcm2, Pol α and the histone chaperone FACT that is also a replisome component. These findings indicate that replisome assembly unites multiple histone-binding activities, which jointly process parental histones to help preserve silent chromatin during the process of chromosome duplication.


Assuntos
Cromatina/metabolismo , DNA Polimerase I/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , DNA Polimerase I/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
12.
Biochem J ; 478(14): 2825-2842, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34195792

RESUMO

Cullin ubiquitin ligases drive replisome disassembly during DNA replication termination. In worm, frog and mouse cells, CUL2LRR1 is required to ubiquitylate the MCM7 subunit of the CMG helicase. Here, we show that cullin ligases also drive CMG-MCM7 ubiquitylation in human cells, thereby making the helicase into a substrate for the p97 unfoldase. Using purified human proteins, including a panel of E2 ubiquitin-conjugating enzymes, we have reconstituted CMG helicase ubiquitylation, dependent upon neddylated CUL2LRR1. The reaction is highly specific to CMG-MCM7 and requires the LRR1 substrate targeting subunit, since replacement of LRR1 with the alternative CUL2 adaptor VHL switches ubiquitylation from CMG-MCM7 to HIF1. CUL2LRR1 firstly drives monoubiquitylation of CMG-MCM7 by the UBE2D class of E2 enzymes. Subsequently, CUL2LRR1 activates UBE2R1/R2 or UBE2G1/G2 to extend a single K48-linked ubiquitin chain on CMG-MCM7. Thereby, CUL2LRR1 converts CMG into a substrate for p97, which disassembles the ubiquitylated helicase during DNA replication termination.


Assuntos
Proteínas Culina/metabolismo , DNA Helicases/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Linhagem Celular , Clonagem Molecular/métodos , Proteínas Culina/genética , DNA Helicases/genética , Humanos , Immunoblotting , Lisina/metabolismo , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células Sf9 , Spodoptera , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
13.
Biochem J ; 478(13): 2465-2479, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34198324

RESUMO

SARS-CoV-2 is responsible for COVID-19, a human disease that has caused over 2 million deaths, stretched health systems to near-breaking point and endangered economies of countries and families around the world. Antiviral treatments to combat COVID-19 are currently lacking. Remdesivir, the only antiviral drug approved for the treatment of COVID-19, can affect disease severity, but better treatments are needed. SARS-CoV-2 encodes 16 non-structural proteins (nsp) that possess different enzymatic activities with important roles in viral genome replication, transcription and host immune evasion. One key aspect of host immune evasion is performed by the uridine-directed endoribonuclease activity of nsp15. Here we describe the expression and purification of nsp15 recombinant protein. We have developed biochemical assays to follow its activity, and we have found evidence for allosteric behaviour. We screened a custom chemical library of over 5000 compounds to identify nsp15 endoribonuclease inhibitors, and we identified and validated NSC95397 as an inhibitor of nsp15 endoribonuclease in vitro. Although NSC95397 did not inhibit SARS-CoV-2 growth in VERO E6 cells, further studies will be required to determine the effect of nsp15 inhibition on host immune evasion.


Assuntos
Antivirais/química , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Endorribonucleases/antagonistas & inibidores , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Regulação Alostérica , Animais , Chlorocebus aethiops , Endorribonucleases/isolamento & purificação , Endorribonucleases/metabolismo , Ensaios Enzimáticos , Fluorescência , Ensaios de Triagem em Larga Escala , Técnicas In Vitro , Cinética , Naftoquinonas/farmacologia , Reprodutibilidade dos Testes , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , Bibliotecas de Moléculas Pequenas/química , Soluções , Células Vero , Proteínas não Estruturais Virais/isolamento & purificação , Proteínas não Estruturais Virais/metabolismo
14.
Biochem J ; 478(13): 2517-2531, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34198325

RESUMO

The COVID-19 pandemic has emerged as the biggest life-threatening disease of this century. Whilst vaccination should provide a long-term solution, this is pitted against the constant threat of mutations in the virus rendering the current vaccines less effective. Consequently, small molecule antiviral agents would be extremely useful to complement the vaccination program. The causative agent of COVID-19 is a novel coronavirus, SARS-CoV-2, which encodes at least nine enzymatic activities that all have drug targeting potential. The papain-like protease (PLpro) contained in the nsp3 protein generates viral non-structural proteins from a polyprotein precursor, and cleaves ubiquitin and ISG protein conjugates. Here we describe the expression and purification of PLpro. We developed a protease assay that was used to screen a custom compound library from which we identified dihydrotanshinone I and Ro 08-2750 as compounds that inhibit PLpro in protease and isopeptidase assays and also inhibit viral replication in cell culture-based assays.


Assuntos
Antivirais/química , Antivirais/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Compostos de Anilina/farmacologia , Animais , Benzamidas/farmacologia , Chlorocebus aethiops , Proteases Semelhantes à Papaína de Coronavírus/genética , Proteases Semelhantes à Papaína de Coronavírus/isolamento & purificação , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Sinergismo Farmacológico , Ensaios Enzimáticos , Flavinas/farmacologia , Transferência Ressonante de Energia de Fluorescência , Furanos/farmacologia , Ensaios de Triagem em Larga Escala , Concentração Inibidora 50 , Naftalenos/farmacologia , Fenantrenos/farmacologia , Quinonas/farmacologia , Reprodutibilidade dos Testes , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , Bibliotecas de Moléculas Pequenas/química , Células Vero , Replicação Viral/efeitos dos fármacos
15.
Biochem J ; 478(13): 2445-2464, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34198326

RESUMO

SARS-CoV-2 is a coronavirus that emerged in 2019 and rapidly spread across the world causing a deadly pandemic with tremendous social and economic costs. Healthcare systems worldwide are under great pressure, and there is an urgent need for effective antiviral treatments. The only currently approved antiviral treatment for COVID-19 is remdesivir, an inhibitor of viral genome replication. SARS-CoV-2 proliferation relies on the enzymatic activities of the non-structural proteins (nsp), which makes them interesting targets for the development of new antiviral treatments. With the aim to identify novel SARS-CoV-2 antivirals, we have purified the exoribonuclease/methyltransferase (nsp14) and its cofactor (nsp10) and developed biochemical assays compatible with high-throughput approaches to screen for exoribonuclease inhibitors. We have screened a library of over 5000 commercial compounds and identified patulin and aurintricarboxylic acid (ATA) as inhibitors of nsp14 exoribonuclease in vitro. We found that patulin and ATA inhibit replication of SARS-CoV-2 in a VERO E6 cell-culture model. These two new antiviral compounds will be valuable tools for further coronavirus research as well as potentially contributing to new therapeutic opportunities for COVID-19.


Assuntos
Antivirais/química , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Exorribonucleases/antagonistas & inibidores , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores , Animais , Ácido Aurintricarboxílico/farmacologia , Chlorocebus aethiops , Ensaios Enzimáticos , Exorribonucleases/metabolismo , Fluorescência , Ensaios de Triagem em Larga Escala , Patulina/farmacologia , Reprodutibilidade dos Testes , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Células Vero , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
16.
Biochem J ; 478(13): 2481-2497, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34198328

RESUMO

The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause a fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. To identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play key roles in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2'-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified four compounds as potential inhibitors of nsp14, all of which also showed antiviral capacity in a cell-based model of SARS-CoV-2 infection. Three of the four compounds also exhibited synergistic effects on viral replication with remdesivir.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Exorribonucleases/antagonistas & inibidores , Metiltransferases/antagonistas & inibidores , Capuzes de RNA/metabolismo , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Antivirais/química , Clorobenzenos/farmacologia , Chlorocebus aethiops , Ensaios Enzimáticos , Exorribonucleases/genética , Exorribonucleases/isolamento & purificação , Exorribonucleases/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Indazóis/farmacologia , Indenos/farmacologia , Indóis/farmacologia , Metiltransferases/genética , Metiltransferases/isolamento & purificação , Metiltransferases/metabolismo , Nitrilas/farmacologia , Fenotiazinas/farmacologia , Purinas/farmacologia , Reprodutibilidade dos Testes , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Especificidade por Substrato , Trifluperidol/farmacologia , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/isolamento & purificação , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/isolamento & purificação , Proteínas Virais Reguladoras e Acessórias/metabolismo
17.
Biochem J ; 478(13): 2499-2515, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34198327

RESUMO

The coronavirus 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread around the world with unprecedented health and socio-economic effects for the global population. While different vaccines are now being made available, very few antiviral drugs have been approved. The main viral protease (nsp5) of SARS-CoV-2 provides an excellent target for antivirals, due to its essential and conserved function in the viral replication cycle. We have expressed, purified and developed assays for nsp5 protease activity. We screened the nsp5 protease against a custom chemical library of over 5000 characterised pharmaceuticals. We identified calpain inhibitor I and three different peptidyl fluoromethylketones (FMK) as inhibitors of nsp5 activity in vitro, with IC50 values in the low micromolar range. By altering the sequence of our peptidomimetic FMK inhibitors to better mimic the substrate sequence of nsp5, we generated an inhibitor with a subnanomolar IC50. Calpain inhibitor I inhibited viral infection in monkey-derived Vero E6 cells, with an EC50 in the low micromolar range. The most potent and commercially available peptidyl-FMK compound inhibited viral growth in Vero E6 cells to some extent, while our custom peptidyl FMK inhibitor offered a marked antiviral improvement.


Assuntos
Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Azóis/farmacologia , Chlorocebus aethiops , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/isolamento & purificação , Proteases 3C de Coronavírus/metabolismo , Ensaios Enzimáticos , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Isoindóis , Leupeptinas/farmacologia , Compostos Organosselênicos/farmacologia , Peptidomiméticos , Proteínas de Ligação a RNA/metabolismo , Reprodutibilidade dos Testes , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Células Vero , Proteínas não Estruturais Virais/metabolismo
18.
PLoS Genet ; 14(6): e1007453, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29879106

RESUMO

Homologous recombination is essential for crossover (CO) formation and accurate chromosome segregation during meiosis. It is of considerable importance to work out how recombination intermediates are processed, leading to CO and non-crossover (NCO) outcome. Genetic analysis in budding yeast and Caenorhabditis elegans indicates that the processing of meiotic recombination intermediates involves a combination of nucleases and DNA repair enzymes. We previously reported that in C. elegans meiotic joint molecule resolution is mediated by two redundant pathways, conferred by the SLX-1 and MUS-81 nucleases, and by the HIM-6 Bloom helicase in conjunction with the XPF-1 endonuclease, respectively. Both pathways require the scaffold protein SLX-4. However, in the absence of all these enzymes, residual processing of meiotic recombination intermediates still occurs and CO formation is reduced but not abolished. Here we show that the LEM-3 nuclease, mutation of which by itself does not have an overt meiotic phenotype, genetically interacts with slx-1 and mus-81 mutants, the respective double mutants displaying 100% embryonic lethality. The combined loss of LEM-3 and MUS-81 leads to altered processing of recombination intermediates, a delayed disassembly of foci associated with CO designated sites, and the formation of univalents linked by SPO-11 dependent chromatin bridges (dissociated bivalents). However, LEM-3 foci do not colocalize with ZHP-3, a marker that congresses into CO designated sites. In addition, neither CO frequency nor distribution is altered in lem-3 single mutants or in combination with mus-81 or slx-4 mutations. Finally, we found persistent chromatin bridges during meiotic divisions in lem-3; slx-4 double mutants. Supported by the localization of LEM-3 between dividing meiotic nuclei, this data suggest that LEM-3 is able to process erroneous recombination intermediates that persist into the second meiotic division.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Segregação de Cromossomos/genética , Endodesoxirribonucleases/genética , Meiose/genética , Reparo de DNA por Recombinação/genética , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Troca Genética/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Feminino , Mutação , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais/genética
19.
Nature ; 510(7504): 293-297, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24805245

RESUMO

Efficient duplication of the genome requires the concerted action of helicase and DNA polymerases at replication forks to avoid stalling of the replication machinery and consequent genomic instability. In eukaryotes, the physical coupling between helicase and DNA polymerases remains poorly understood. Here we define the molecular mechanism by which the yeast Ctf4 protein links the Cdc45-MCM-GINS (CMG) DNA helicase to DNA polymerase α (Pol α) within the replisome. We use X-ray crystallography and electron microscopy to show that Ctf4 self-associates in a constitutive disk-shaped trimer. Trimerization depends on a ß-propeller domain in the carboxy-terminal half of the protein, which is fused to a helical extension that protrudes from one face of the trimeric disk. Critically, Pol α and the CMG helicase share a common mechanism of interaction with Ctf4. We show that the amino-terminal tails of the catalytic subunit of Pol α and the Sld5 subunit of GINS contain a conserved Ctf4-binding motif that docks onto the exposed helical extension of a Ctf4 protomer within the trimer. Accordingly, we demonstrate that one Ctf4 trimer can support binding of up to three partner proteins, including the simultaneous association with both Pol α and GINS. Our findings indicate that Ctf4 can couple two molecules of Pol α to one CMG helicase within the replisome, providing a new model for lagging-strand synthesis in eukaryotes that resembles the emerging model for the simpler replisome of Escherichia coli. The ability of Ctf4 to act as a platform for multivalent interactions illustrates a mechanism for the concurrent recruitment of factors that act together at the fork.


Assuntos
DNA Helicases/metabolismo , DNA Polimerase I/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , DNA Helicases/química , DNA Helicases/ultraestrutura , DNA Polimerase I/química , DNA Polimerase I/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Microscopia Eletrônica , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura
20.
Mol Cell ; 45(5): 696-704, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22325992

RESUMO

The S phase checkpoint pathway preserves genome stability by protecting defective DNA replication forks, but the underlying mechanisms are still understood poorly. Previous work with budding yeast suggested that the checkpoint kinases Mec1 and Rad53 might prevent collapse of the replisome when nucleotide concentrations are limiting, thereby allowing the subsequent resumption of DNA synthesis. Here we describe a direct analysis of replisome stability in budding yeast cells lacking checkpoint kinases, together with a high-resolution view of replisome progression across the genome. Surprisingly, we find that the replisome is stably associated with DNA replication forks following replication stress in the absence of Mec1 or Rad53. A component of the replicative DNA helicase is phosphorylated within the replisome in a Mec1-dependent manner upon replication stress, and our data indicate that checkpoint kinases control replisome function rather than stability, as part of a multifaceted response that allows cells to survive defects in chromosome replication.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Replicação do DNA/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Pontos de Checagem da Fase S do Ciclo Celular , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2 , Instabilidade Genômica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA