Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 15(11): e2003145, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29091712

RESUMO

How can we provide fertile ground for students to simultaneously explore a breadth of foundational knowledge, develop cross-disciplinary problem-solving skills, gain resiliency, and learn to work as a member of a team? One way is to integrate original research in the context of an undergraduate biochemistry course. In this Community Page, we discuss the development and execution of an interdisciplinary and cross-departmental undergraduate biochemistry laboratory course. We present a template for how a similar course can be replicated at other institutions and provide pedagogical and research results from a sample module in which we challenged our students to study the binding interface between 2 important biosynthetic proteins. Finally, we address the community and invite others to join us in making a larger impact on undergraduate education and the field of biochemistry by coordinating efforts to integrate research and teaching across campuses.


Assuntos
Bioquímica/educação , Currículo , Mapas de Interação de Proteínas , Pesquisa/educação , Ensino , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Laboratórios/normas , Aprendizagem , Oxigenases de Função Mista/metabolismo , Estudantes
2.
mBio ; 13(4): e0162922, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862776

RESUMO

Vibrio parahaemolyticus is among the leading causes of bacterial seafood-borne acute gastroenteritis. Like many intracellular pathogens, V. parahaemolyticus invades host cells during infection by deamidating host small Rho GTPases. The Rho GTPase deamidating activity of VopC, a type 3 secretion system (T3SS) translocated effector, drives V. parahaemolyticus invasion. The intracellular pathogen uropathogenic Escherichia coli (UPEC) invades host cells by secreting a VopC homolog, the secreted toxin cytotoxic necrotizing factor 1 (CNF1). Because of the homology between VopC and CNF1, we hypothesized that topical application of CNF1 during V. parahaemolyticus infection could supplement VopC activity. Here, we demonstrate that CNF1 improves the efficiency of V. parahaemolyticus invasion, a bottleneck in V. parahaemolyticus infection, across a range of doses. CNF1 increases V. parahaemolyticus invasion independent of both VopC and the T3SS altogether but leaves a disproportionate fraction of intracellular bacteria unable to escape the endosome and complete their infection cycle. This phenomenon holds true in the presence or absence of VopC but is particularly pronounced in the absence of a T3SS. The native VopC, by contrast, promotes a far less efficient invasion but permits the majority of internalized bacteria to escape the endosome and complete their infection cycle. These studies highlight the significance of enzymatic specificity during infection, as virulence factors (VopC and CNF1 in this instance) with similarities in function (bacterial uptake), catalytic activity (deamidation), and substrates (Rho GTPases) are not sufficiently interchangeable for mediating a successful invasion for neighboring bacterial pathogens. IMPORTANCE Many species of intracellular bacterial pathogens target host small Rho GTPases to initiate invasion, including the human pathogens Vibrio parahaemolyticus and uropathogenic Escherichia coli (UPEC). The type three secretion system (T3SS) effector VopC of V. parahaemolyticus promotes invasion through the deamidation of Rac1 and CDC42 in the host, whereas the secreted toxin cytotoxic necrotizing factor 1 (CNF1) drives UPEC's internalization through the deamidation of Rac1, CDC42, and RhoA. Despite these similarities in the catalytic activity of CNF1 and VopC, we observed that the two enzymes were not interchangeable. Although CNF1 increased V. parahaemolyticus endosomal invasion, most intracellular V. parahaemolyticus aborted their infection cycle and remained trapped in endosomes. Our findings illuminate how the precise biochemical fine-tuning of T3SS effectors is essential for efficacious pathogenesis. Moreover, they pave the way for future investigations into the biochemical mechanisms underpinning V. parahaemolyticus endosomal escape and, more broadly, the regulation of successful pathogenesis.


Assuntos
Infecções Bacterianas , Proteínas de Escherichia coli , Escherichia coli Uropatogênica , Vibrio parahaemolyticus , Humanos , Sistemas de Secreção Tipo III/metabolismo , Escherichia coli Uropatogênica/metabolismo , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Fatores de Virulência , Proteínas rho de Ligação ao GTP
3.
mSystems ; 6(1)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563785

RESUMO

Diverse bacterial pathogens employ effector delivery systems to disrupt vital cellular processes in the host (N. M. Alto and K. Orth, Cold Spring Harbor Perspect Biol 4:a006114, 2012, https://doi.org/10.1101/cshperspect.a006114). The type III secretion system 1 of the marine pathogen Vibrio parahaemolyticus utilizes the sequential action of four effectors to induce a rapid, proinflammatory cell death uniquely characterized by a prosurvival host transcriptional response (D. L. Burdette, M. L. Yarbrough, A Orvedahl, C. J. Gilpin, and K. Orth, Proc Natl Acad Sci USA 105:12497-12502, 2008, https://doi.org/10.1073/pnas.0802773105; N. J. De Nisco, M. Kanchwala, P. Li, J. Fernandez, C. Xing, and K. Orth, Sci Signal 10:eaa14501, 2017, https://doi.org/10.1126/scisignal.aal4501). Herein, we show that this prosurvival response is caused by the action of the channel-forming effector VopQ that targets the host V-ATPase, resulting in lysosomal deacidification and inhibition of lysosome-autophagosome fusion. Recent structural studies have shown how VopQ interacts with the V-ATPase and, while in the ER, a V-ATPase assembly intermediate can interact with VopQ, causing a disruption in membrane integrity. Additionally, we observed that VopQ-mediated disruption of the V-ATPase activates the IRE1 branch of the unfolded protein response (UPR), resulting in an IRE1-dependent activation of ERK1/2 MAPK signaling. We also find that this early VopQ-dependent induction of ERK1/2 phosphorylation is terminated by the VopS-mediated inhibitory AMPylation of Rho GTPase signaling. Since VopS dampens VopQ-induced IRE1-dependent ERK1/2 activation, we propose that IRE1 activates ERK1/2 phosphorylation at or above the level of Rho GTPases. This study illustrates how temporally induced effectors can work as in tandem as agonist/antagonist to manipulate host signaling and reveals new connections between V-ATPase function, UPR, and MAPK signaling.IMPORTANCE Vibrio parahaemolyticus is a seafood-borne pathogen that encodes two type 3 secretion systems (T3SS). The first system, T3SS1, is thought to be maintained in all strains of V. parahaemolyticus to maintain survival in the environment, whereas the second system, T3SS2, is linked to clinical isolates and disease in humans. Here, we found that first system targets evolutionarily conserved signaling systems to manipulate host cells, eventually causing a rapid, orchestrated cells death within 3 h. We have found that the T3SS1 injects virulence factors that temporally manipulate host signaling. Within the first hour of infection, the effector VopQ acts first by activating host survival signals while diminishing the host cell apoptotic machinery. Less than an hour later, another effector, VopS, reverses activation and inhibition of these signaling systems, ultimately leading to death of the host cell. This work provides example of how pathogens have evolved to manipulate the interplay between T3SS effectors to regulate host signaling pathways.

4.
Curr Protoc Microbiol ; 59(1): e131, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33285040

RESUMO

Vibrio parahaemolyticus is a Gram-negative, halophilic bacterium and opportunistic pathogen of humans and shrimp. Investigating the mechanisms of V. parahaemolyticus infection and the multifarious virulence factors it employs requires procedures for bacterial culture, genetic manipulation, and analysis of virulence phenotypes. Detailed protocols for growth assessment, generation of mutants, and phenotype assessment are included in this article. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Assessment of growth of V. parahaemolyticus Alternate Protocol 1: Assessment of growth of V. parahaemolyticus using a plate reader Basic Protocol 2: Swimming/swarming motility assay Basic Protocol 3: Genetic manipulation Alternate Protocol 2: Natural transformation Basic Protocol 4: Secretion assay and sample preparation for mass spectrometry analysis Basic Protocol 5: Invasion assay (gentamicin protection assay) Basic Protocol 6: Immunofluorescence detection of intracellular V. parahaemolyticus Basic Protocol 7: Cytotoxicity assay for T3SS2.


Assuntos
Técnicas Bacteriológicas/métodos , Vibrioses/microbiologia , Vibrio parahaemolyticus/crescimento & desenvolvimento , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Gentamicinas/farmacologia , Células HeLa , Humanos , Coloração e Rotulagem , Natação , Vibrioses/tratamento farmacológico , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/patogenicidade , Virulência/genética
5.
Elife ; 92020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32808593

RESUMO

Pathogens find diverse niches for survival including inside a host cell where replication occurs in a relatively protective environment. Vibrio parahaemolyticus is a facultative intracellular pathogen that uses its type 3 secretion system 2 (T3SS2) to invade and replicate inside host cells. Analysis of the T3SS2 pathogenicity island encoding the T3SS2 appeared to lack a mechanism for egress of this bacterium from the invaded host cell. Using a combination of molecular tools, we found that VPA0226, a constitutively secreted lipase, is required for escape of V. parahaemolyticus from the host cells. This lipase must be delivered into the host cytoplasm where it preferentially uses fatty acids associated with innate immune response to esterify cholesterol, weakening the plasma membrane and allowing egress of the bacteria. This study reveals the resourcefulness of microbes and the interplay between virulence systems and host cell resources to evolve an ingenious scheme for survival and escape.


Assuntos
Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Lipase/metabolismo , Vibrio parahaemolyticus/metabolismo , Esterificação , Ilhas Genômicas , Sistemas de Secreção Tipo III , Vibrio parahaemolyticus/enzimologia
6.
mSphere ; 3(2)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29577084

RESUMO

Enteroaggregative Escherichia coli (EAEC) bacteria are exceptional colonizers that are associated with diarrhea. The genome of EAEC strain 042, a diarrheal pathogen validated in a human challenge study, encodes multiple colonization factors. Notable among them are aggregative adherence fimbriae (AAF/II) and a secreted antiaggregation protein (Aap). Deletion of aap is known to increase adherence, autoaggregation, and biofilm formation, so it was proposed that Aap counteracts AAF/II-mediated interactions. We hypothesized that Aap sterically masks heat-resistant agglutinin 1 (Hra1), an integral outer membrane protein recently identified as an accessory colonization factor. We propose that this masking accounts for reduced in vivo colonization upon hra1 deletion and yet no colonization-associated phenotypes when hra1 is deleted in vitro. Using single and double mutants of hra1, aap, and the AAF/II structural protein gene aafA, we demonstrated that increased adherence in aap mutants occurs even when AAF/II proteins are genetically or chemically removed. Deletion of hra1 together with aap abolishes the hyperadherence phenotype, demonstrating that Aap indeed masks Hra1. The presence of all three colonization factors, however, is necessary for optimal colonization and for rapidly building stacked-brick patterns on slides and cultured monolayers, the signature EAEC phenotype. Altogether, our data demonstrate that Aap serves to mask nonstructural adhesins such as Hra1 and that optimal colonization by EAEC is mediated through interactions among multiple surface factors. IMPORTANCE Enteroaggregative Escherichia coli (EAEC) bacteria are exceptional colonizers of the human intestine and can cause diarrhea. Compared to other E. coli pathogens, little is known about the genes and pathogenic mechanisms that differentiate EAEC from harmless commensal E. coli. EAEC bacteria attach via multiple proteins and structures, including long appendages produced by assembling molecules of AafA and a short surface protein called Hra1. EAEC also secretes an antiadherence protein (Aap; also known as dispersin) which remains loosely attached to the cell surface. This report shows that dispersin covers Hra1 such that the adhesive properties of EAEC seen in the laboratory are largely produced by AafA structures. When the bacteria colonize worms, dispersin is sloughed off, or otherwise removed, such that Hra1-mediated adherence occurs. All three factors are required for optimal colonization, as well as to produce the signature EAEC stacked-brick adherence pattern. Interplay among multiple colonization factors may be an essential feature of exceptional colonizers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA