Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(42): 11738-11743, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27698123

RESUMO

The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ∼99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ∼400 µs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limited by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. This work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.

2.
Proc Natl Acad Sci U S A ; 108(47): 18893-8, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22084063

RESUMO

Silicon, germanium, and related alloys, which provide the leading materials platform of electronics, are extremely inefficient light emitters because of the indirect nature of their fundamental energy bandgap. This basic materials property has so far hindered the development of group-IV photonic active devices, including diode lasers, thereby significantly limiting our ability to integrate electronic and photonic functionalities at the chip level. Here we show that Ge nanomembranes (i.e., single-crystal sheets no more than a few tens of nanometers thick) can be used to overcome this materials limitation. Theoretical studies have predicted that tensile strain in Ge lowers the direct energy bandgap relative to the indirect one. We demonstrate that mechanically stressed nanomembranes allow for the introduction of sufficient biaxial tensile strain to transform Ge into a direct-bandgap material with strongly enhanced light-emission efficiency, capable of supporting population inversion as required for providing optical gain.


Assuntos
Engenharia/métodos , Germânio/química , Luz , Membranas Artificiais , Nanoestruturas/química , Simulação por Computador , Modelos Químicos , Análise Espectral Raman , Estresse Mecânico , Resistência à Tração
3.
Phys Rev Lett ; 111(24): 246801, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483685

RESUMO

By combining density functional theory, nonequilibrium Green's function formulism and effective-Hamiltonian approaches, we demonstrate strain-engineered surface transport in Si(001), with the complete isolation of the Si surface states from the bulk bands. Our results show that sufficient tensile strain can effectively remove the overlap between the surface valence state and the bulk valence band, because of the drastically different deformation potentials. Isolation of the surface valence state is possible with a tensile strain of ∼1.5%, a value that is accessible experimentally. Quantum transport simulations of a chemical sensing device based on strained Si(001) surface confirm the dominating surface conductance, giving rise to an enhanced molecular sensitivity. Our results show promise for using strain engineering to further our ability to manipulate surface states for quantum information processing and surface state-based devices.

4.
ACS Appl Mater Interfaces ; 15(9): 12545-12550, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848224

RESUMO

Submicrometer-thick layers of hexagonal boron nitride (hBN) exhibit high in-plane thermal conductivity and useful optical properties, and serve as dielectric encapsulation layers with low electrostatic inhomogeneity for graphene devices. Despite the promising applications of hBN as a heat spreader, the thickness dependence of its cross-plane thermal conductivity is not known, and the cross-plane phonon mean free paths (MFPs) have not been measured. We measure the cross-plane thermal conductivity of hBN flakes exfoliated from bulk crystals. We find that submicrometer thick flakes exhibit thermal conductivities up to 8.1 ± 0.5 W m-1 K-1 at 295 K, which exceeds previously reported bulk values by more than 60%. Surprisingly, the average phonon mean free path is found to be several hundred nanometers at room temperature, a factor of 5 larger than previous predictions. When planar twist interfaces are introduced into the crystal by mechanically stacking multiple thin flakes, the cross-plane thermal conductivity of the stack is found to be a factor of 7 below that of individual flakes with similar total thickness, thus providing strong evidence that phonon scattering at twist boundaries limits the maximum phonon MFPs. These results have important implications for hBN integration in nanoelectronics and improve our understanding of thermal transport in two-dimensional materials.

5.
Nature ; 439(7077): 703-6, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16467833

RESUMO

The widely used 'silicon-on-insulator' (SOI) system consists of a layer of single-crystalline silicon supported on a silicon dioxide substrate. When this silicon layer (the template layer) is very thin, the assumption that an effectively infinite number of atoms contributes to its physical properties no longer applies, and new electronic, mechanical and thermodynamic phenomena arise, distinct from those of bulk silicon. The development of unusual electronic properties with decreasing layer thickness is particularly important for silicon microelectronic devices, in which (001)-oriented SOI is often used. Here we show--using scanning tunnelling microscopy, electronic transport measurements, and theory--that electronic conduction in thin SOI(001) is determined not by bulk dopants but by the interaction of surface or interface electronic energy levels with the 'bulk' band structure of the thin silicon template layer. This interaction enables high-mobility carrier conduction in nanometre-scale SOI; conduction in even the thinnest membranes or layers of Si(001) is therefore possible, independent of any considerations of bulk doping, provided that the proper surface or interface states are available to enable the thermal excitation of 'bulk' carriers in the silicon layer.

6.
Nanotechnology ; 22(5): 055704, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21178224

RESUMO

Integrated freestanding single-crystal silicon nanowires with typical dimension of 100 nm × 100 nm × 5 µm are fabricated by conventional 1:1 optical lithography and wet chemical silicon etching. The fabrication procedure can lead to wafer-scale integration of silicon nanowires in arrays. The measured electrical transport characteristics of the silicon nanowires covered with/without SiO(2) support a model of Fermi level pinning near the conduction band. The I-V curves of the nanowires reveal a current carrier polarity reversal depending on Si-SiO(2) and Si-H bonds on the nanowire surfaces.

7.
ACS Nano ; 15(1): 1229-1239, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33337861

RESUMO

We present a transformative route to obtain mass-producible helical slow-wave structures for operation in beam-wave interaction devices at THz frequencies. The approach relies on guided self-assembly of conductive nanomembranes. Our work coordinates simulations of cold helices (i.e., helices with no electron beam) and hot helices (i.e., helices that interact with an electron beam). The theoretical study determines electromagnetic fields, current distributions, and beam-wave interaction in a parameter space that has not been explored before. These parameters include microscale diameter, pitch, tape width, and nanoscale surface finish. Parametric simulations show that beam-wave interaction devices based on self-assembled and electroplated helices will potentially provide gain-bandwidth products higher than 2 dBTHz at 1 THz. Informed by the simulation results, we fabricate prototype helices for operation as slow-wave structures at THz frequencies, using metal nanomembranes. Single and intertwined double helices, as well as helices with one or two chiralities, are obtained by self-assembly of stressed metal bilayers. The nanomembrane stiffness and built-in stress control the diameter of the helices. The in-plane geometry of the nanomembrane determines the pitch, the chirality, and the formation of single vs intertwined double helices.

8.
Phys Rev Lett ; 105(1): 016802, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20867470

RESUMO

The evidence that the band gap of Si changes significantly with strain suggests that by alternating regions of strained and unstrained Si one creates a single-element electronic heterojunction superlattice (SL), with the carrier confinement defined by strain rather than by the chemical differences in conventional compositional SLs. Using first-principles calculations, we map out the electronic phase diagram of a one-dimensional pure-silicon SL. It exhibits a high level of phase tunability, e.g., tuning from type I to type II. Our theory rationalizes a recent observation of a strain SL in a Si nanowire and provides general guidance for the fabrication of single-element strain SLs.

9.
Langmuir ; 26(3): 1991-5, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20038107

RESUMO

We describe a novel "one-step" combined synthesis and functionalization of carbon nanoparticles, using a new generation of all-in-one small submerged-arc plasma reactor that we have developed. We take advantage of long-lived free radicals generated by a submerged-arc helium atmosphere plasma and resident on the nanoparticle surfaces to supply ethylenediamine directly after the plasma to functionalize the carbon nanoparticles. XPS, TG/DTG, FTIR, and fluorescence tests confirm the viability of this new amination process. The nanoparticles are small and relatively uniformly sized. Their dispersibility in aqueous solution is significant.


Assuntos
Carbono/química , Nanopartículas/química , Aminação , Benzeno/química , Etilenodiaminas/química , Radicais Livres/química , Hélio/química , Microscopia , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
10.
ACS Appl Mater Interfaces ; 12(18): 20859-20866, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32282183

RESUMO

The growth of single crystals of Ge-rich SiGe alloys in an extended composition range is demonstrated using the nanomembrane (NM) platform and III-V growth substrates. Thin films of high-Ge-content SiGe films are grown on GaAs(001) to below the kinetic critical thickness and released from the growth substrate by selectively etching a release layer to relax the strain. The resulting crystalline nanomembranes at the natural lattice constant of the alloy are transferred to a new host and epitaxially overgrown at similar compositions to make a thicker single crystal. Straightforward critical-thickness calculations demonstrate that a very wide range of group IV alloys, including those involving Sn, can be fabricated using the NM platform and the proper choice of III-V substrate. Motivations for making new group IV alloys center on band gap engineering for the development of novel group IV optoelectronic structures and devices.

11.
Nanoscale ; 11(11): 4864-4875, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30821309

RESUMO

Chemical vapor deposition of CH4 on Ge(001) can enable anisotropic growth of narrow, semiconducting graphene nanoribbons with predominately smooth armchair edges and high-performance charge transport properties. However, such nanoribbons are not aligned in one direction but instead grow perpendicularly, which is not optimal for integration into high-performance electronics. Here, it is demonstrated that vicinal Ge(001) substrates can be used to synthesize armchair nanoribbons, of which ∼90% are aligned within ±1.5° perpendicular to the miscut. When the growth rate is slow, graphene crystals evolve as nanoribbons. However, as the growth rate increases, the uphill and downhill crystal edges evolve asymmetrically. This asymmetry is consistent with stronger binding between the downhill edge and the Ge surface, for example due to different edge termination as shown by density functional theory calculations. By tailoring growth rate and time, nanoribbons with sub-10 nm widths that exhibit excellent charge transport characteristics, including simultaneous high on-state conductance of 8.0 µS and a high on/off conductance ratio of 570 in field-effect transistors, are achieved. Large-area alignment of semiconducting ribbons with promising charge transport properties is an important step towards understanding the anisotropic nanoribbon growth and integrating these materials into scalable, future semiconductor technologies.

12.
Nanomaterials (Basel) ; 8(6)2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882799

RESUMO

Group-IV semiconductors, which provide the leading materials platform of micro- electronics, are generally unsuitable for light emitting device applications because of their indirect- bandgap nature. This property currently limits the large-scale integration of electronic and photonic functionalities on Si chips. The introduction of tensile strain in Ge, which has the effect of lowering the direct conduction-band minimum relative to the indirect valleys, is a promising approach to address this challenge. Here we review recent work focused on the basic science and technology of mechanically stressed Ge nanomembranes, i.e., single-crystal sheets with thicknesses of a few tens of nanometers, which can sustain particularly large strain levels before the onset of plastic deformation. These nanomaterials have been employed to demonstrate large strain-enhanced photoluminescence, population inversion under optical pumping, and the formation of direct-bandgap Ge. Furthermore, Si-based photonic-crystal cavities have been developed that can be combined with these Ge nanomembranes without limiting their mechanical flexibility. These results highlight the potential of strained Ge as a CMOS-compatible laser material, and more in general the promise of nanomembrane strain engineering for novel device technologies.

13.
ACS Appl Mater Interfaces ; 9(46): 41034-41042, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29094920

RESUMO

Integration of emerging complex-oxide compounds into sophisticated nanoscale single-crystal geometries faces significant challenges arising from the kinetics of vapor-phase thin-film epitaxial growth. A comparison of the crystallization of the model perovskite SrTiO3 (STO) on (001) STO and oxidized (001) Si substrates indicates that there is a viable alternative route that can yield three-dimensional epitaxial synthesis, an approach in which STO is crystallized from an amorphous thin film by postdeposition annealing. The crystallization of amorphous STO on single-crystal (001) STO substrates occurs via solid-phase epitaxy (SPE), without nucleation and with a temperature-dependent amorphous/crystalline interface velocity. In comparison, the crystallization of STO on SiO2/(001) Si substrates requires nucleation, resulting in a polycrystalline film with crystal sizes on the order of 10 nm. A comparison of the temperature dependence of the nucleation and growth processes for these two substrates indicates that it will be possible to create crystalline STO materials using low-temperature crystallization from a crystalline seed, even in the presence of interfaces with other materials. These processes provide a potential route for the formation of single crystals with intricate three-dimensional nanoscale geometries.

14.
ACS Appl Mater Interfaces ; 9(48): 42372-42382, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29129058

RESUMO

Methods to integrate different crystal orientations, strain states, and compositions of semiconductors in planar and preferably flexible configurations may enable nontraditional sensing-, stimulating-, or communication-device applications. We combine crystalline-silicon nanomembranes, patterning, membrane transfer, and epitaxial growth to demonstrate planar arrays of different orientations and strain states of Si in a single membrane, which is then readily transferable to other substrates, including flexible supports. As examples, regions of Si(001) and Si(110) or strained Si(110) are combined to form a multicomponent, single substrate with high-quality narrow interfaces. We perform extensive structural characterization of all interfaces and measure charge-carrier mobilities in different regions of a 2D quilt. The method is readily extendable to include varying compositions or different classes of materials.

15.
ACS Appl Mater Interfaces ; 9(20): 17629-17636, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28474879

RESUMO

The oxidation of Ge covered with graphene that is either grown on or transferred to the surface is investigated by X-ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy. Graphene properly grown by chemical vapor deposition on Ge(100), (111), or (110) effectively inhibits room-temperature oxidation of the surface. When graphene is transferred to the Ge surface, oxidation is reduced relative to that on uncovered Ge but has the same power law dependence. We conclude that access to the graphene/Ge interface must occur via defects in the graphene. The excellent passivation provided by graphene grown on Ge should enhance applications of Ge in the electronic-device industry.

16.
Nature ; 432(7016): 450-1, 2004 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-15565134
17.
ACS Nano ; 9(5): 4891-9, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25932940

RESUMO

To assess possible improvements in the electronic performance of two-dimensional electron gases (2DEGs) in silicon, SiGe/Si/SiGe heterostructures are grown on fully elastically relaxed single-crystal SiGe nanomembranes produced through a strain engineering approach. This procedure eliminates the formation of dislocations in the heterostructure. Top-gated Hall bar devices are fabricated to enable magnetoresistivity and Hall effect measurements. Both Shubnikov-de Haas oscillations and the quantum Hall effect are observed at low temperatures, demonstrating the formation of high-quality 2DEGs. Values of charge carrier mobility as a function of carrier density extracted from these measurements are at least as high or higher than those obtained from companion measurements made on heterostructures grown on conventional strain graded substrates. In all samples, impurity scattering appears to limit the mobility.

18.
Nat Commun ; 6: 8006, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26258594

RESUMO

Graphene can be transformed from a semimetal into a semiconductor if it is confined into nanoribbons narrower than 10 nm with controlled crystallographic orientation and well-defined armchair edges. However, the scalable synthesis of nanoribbons with this precision directly on insulating or semiconducting substrates has not been possible. Here we demonstrate the synthesis of graphene nanoribbons on Ge(001) via chemical vapour deposition. The nanoribbons are self-aligning 3° from the Ge〈110〉 directions, are self-defining with predominantly smooth armchair edges, and have tunable width to <10 nm and aspect ratio to >70. In order to realize highly anisotropic ribbons, it is critical to operate in a regime in which the growth rate in the width direction is especially slow, <5 nm h(-1). This directional and anisotropic growth enables nanoribbon fabrication directly on conventional semiconductor wafer platforms and, therefore, promises to allow the integration of nanoribbons into future hybrid integrated circuits.

19.
ACS Nano ; 8(4): 3136-51, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24597822

RESUMO

The controlled application of strain in crystalline semiconductors can be used to modify their basic physical properties to enhance performance in electronic and photonic device applications. In germanium, tensile strain can even be used to change the nature of the fundamental energy band gap from indirect to direct, thereby dramatically increasing the interband radiative efficiency and allowing population inversion and optical gain. For biaxial tension, the required strain levels (around 2%) are physically accessible but necessitate the use of very thin crystals. A particularly promising materials platform in this respect is provided by Ge nanomembranes, that is, single-crystal sheets with nanoscale thicknesses that are either completely released from or partially suspended over their native substrates. Using this approach, Ge tensilely strained beyond the expected threshold for direct-band gap behavior has recently been demonstrated, together with strong strain-enhanced photoluminescence and evidence of population inversion. We review the basic properties, state of the art, and prospects of tensilely strained Ge for infrared photonic applications.

20.
ACS Nano ; 8(12): 12219-27, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25479558

RESUMO

Neurons are often cultured in vitro on a flat, open, and rigid substrate, a platform that does not reflect well the native microenvironment of the brain. To address this concern, we have developed a culturing platform containing arrays of microchannels, formed in a crystalline-silicon nanomembrane (NM) resting on polydimethylsiloxane; this platform will additionally enable active sensing and stimulation at the local scale, via devices fabricated in the silicon. The mechanical properties of the composite Si/compliant substrate nanomaterial approximate those of neural tissue. The microchannels, created in the NM by strain engineering, demonstrate strong guidance of neurite outgrowth. Using plasma techniques, we developed a means to coat just the inside surface of these channels with an adhesion promoter (poly-d-lysine). For NM channels with openings larger than the cross-sectional area of a single axon, strong physical confinement and guidance of axons through the channels are observed. Imaging of axons that grow in channels with openings that approximate the size of an axon suggests that a tight seal exists between the cell membrane and the inner surface of the channel, mimicking a myelin sheath. Such a tight seal of the cell membrane with the channel surface would make this platform an attractive candidate for future neuronal repair. Results of measurements of impedance and photoluminescence of bare NM channels are comparable to those on a flat NM, demonstrating electrical and optical modalities of our platform and suggesting that this scaffold can be expanded for active sensing and monitoring of neuron cellular processes in conditions in which they exist naturally.


Assuntos
Técnicas de Cultura de Células/instrumentação , Microtecnologia/instrumentação , Neuritos/metabolismo , Semicondutores , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Dimetilpolisiloxanos/química , Fenômenos Mecânicos , Camundongos , Modelos Moleculares , Conformação Molecular , Neuritos/efeitos dos fármacos , Fenômenos Ópticos , Polilisina/química , Silício/química , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA