Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 19(1): 96, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866813

RESUMO

BACKGROUND: Plants are sessile organisms and are unable to relocate to favorable locations under extreme environmental conditions. Hence they have no choice but to acclimate and eventually adapt to the severe conditions to ensure their survival. As traditional methods of bolstering plant defense against stressful conditions come to their biological limit, we require newer methods that can allow us to strengthen plants' internal defense mechanism. These factors motivated us to look into the genetic networks of plants. The WRKY transcription factors are well known for their role in plant defense against biotic stresses, but recent studies have shed light on their activities against abiotic stresses such as drought. We modeled this network of WRKY transcription factors using Bayesian networks and applied inference algorithm to find the best regulators of drought response. Biologically intervening (activating/inhibiting) these regulators can bolster the defense response of plants against droughts. RESULT: We used real world data from the NCBI GEO database and synthetic data generated from dependencies in the Bayesian network to learn the network parameters. These parameters were estimated using both a Bayesian and a frequentist approach. The two sets of parameters were used in a utility-based inference algorithm to determine the best regulator of plant drought response in the WRKY transcription factor network. CONCLUSION: Our analysis revealed that activating the transcription factor WRKY18 had the highest likelihood of inducing drought response among all the other elements of the WRKY transcription factor network. Our observation was also supported by biological literature, as WRKY18 is known to regulate drought responsive genes positively. We also found that activating the protein complex WRKY60-60 had the second highest likelihood of inducing drought defense response. Consistent with the existing biological literature, we also found the transcription factor WRKY40 and the protein complex WRKY40-40 to suppress drought response.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/fisiologia , Teorema de Bayes , Secas , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética
2.
bioRxiv ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39026781

RESUMO

Background: In 2019, the Open Pediatric Brain Tumor Atlas (OpenPBTA) was created as a global, collaborative open-science initiative to genomically characterize 1,074 pediatric brain tumors and 22 patient-derived cell lines. Here, we extend the OpenPBTA to create the Open Pediatric Cancer (OpenPedCan) Project, a harmonized open-source multi-omic dataset from 6,112 pediatric cancer patients with 7,096 tumor events across more than 100 histologies. Combined with RNA-Seq from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA), OpenPedCan contains nearly 48,000 total biospecimens (24,002 tumor and 23,893 normal specimens). Findings: We utilized Gabriella Miller Kids First (GMKF) workflows to harmonize WGS, WXS, RNA-seq, and Targeted Sequencing datasets to include somatic SNVs, InDels, CNVs, SVs, RNA expression, fusions, and splice variants. We integrated summarized CPTAC whole cell proteomics and phospho-proteomics data, miRNA-Seq data, and have developed a methylation array harmonization workflow to include m-values, beta-vales, and copy number calls. OpenPedCan contains reproducible, dockerized workflows in GitHub, CAVATICA, and Amazon Web Services (AWS) to deliver harmonized and processed data from over 60 scalable modules which can be leveraged both locally and on AWS. The processed data are released in a versioned manner and accessible through CAVATICA or AWS S3 download (from GitHub), and queryable through PedcBioPortal and the NCI's pediatric Molecular Targets Platform. Notably, we have expanded PBTA molecular subtyping to include methylation information to align with the WHO 2021 Central Nervous System Tumor classifications, allowing us to create research-grade integrated diagnoses for these tumors. Conclusions: OpenPedCan data and its reproducible analysis module framework are openly available and can be utilized and/or adapted by researchers to accelerate discovery, validation, and clinical translation.

3.
PLoS One ; 16(8): e0255486, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34398879

RESUMO

Drought is a natural hazard that affects crops by inducing water stress. Water stress, induced by drought accounts for more loss in crop yield than all the other causes combined. With the increasing frequency and intensity of droughts worldwide, it is essential to develop drought-resistant crops to ensure food security. In this paper, we model multiple drought signaling pathways in Arabidopsis using Bayesian networks to identify potential regulators of drought-responsive reporter genes. Genetically intervening at these regulators can help develop drought-resistant crops. We create the Bayesian network model from the biological literature and determine its parameters from publicly available data. We conduct inference on this model using a stochastic simulation technique known as likelihood weighting to determine the best regulators of drought-responsive reporter genes. Our analysis reveals that activating MYC2 or inhibiting ATAF1 are the best single node intervention strategies to regulate the drought-responsive reporter genes. Additionally, we observe simultaneously activating MYC2 and inhibiting ATAF1 is a better strategy. The Bayesian network model indicated that MYC2 and ATAF1 are possible regulators of the drought response. Validation experiments showed that ATAF1 negatively regulated the drought response. Thus intervening at ATAF1 has the potential to create drought-resistant crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Teorema de Bayes , Produtos Agrícolas/crescimento & desenvolvimento , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA