Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 35(21)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456537

RESUMO

Performing electrical measurements on single plasmonic nanostructures presents a challenging task due to the limitations in contacting the structure without disturbing its optical properties. In this work, we show two ways to overcome this problem by fabricating bow-tie nano-antennas with indium tin oxide leads. Indium tin oxide is transparent in the visible range and electrically conducting, but non-conducting at optical frequencies. The structures are prepared by electron beam lithography. Further definition, such as introducing small gaps, is achieved by focused helium ion beam milling. Dark-field reflection spectroscopy characterization of the dimer antennas shows typical unperturbed plasmonic spectra with multiple resonance peaks from mode hybridization.

2.
Nanotechnology ; 33(9)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34727539

RESUMO

Surface-enhanced Raman spectroscopy (SERS) with pyramidal gold nanostructures increases the signal of Raman active analytes, since hotspots form at the edges and tip of a nanopyramid under illumination. 2D hexagonal arrays of pyramidal nanostructures with a quadratic base are fabricated through cost-effective nanosphere lithography and transferred onto elastomeric polydimethylsiloxane. By making use of the {111} crystal plane of a silicon (100) wafer, an inverted pyramidal array is etched, which serves as the complementary negative for the gold nanostructures. Either a continuous gold thin-film with protruding pyramids or separate isolated nanopyramids are produced. Three basic fabrication strategies are presented. The SERS enhancement is verified by Raman mapping of 4-mercaptobenzoic acid (4-MBA) molecules. Fabrication on a flexible substrate paves the way for future applications on curved surfaces orin situtunable resonances.

3.
Nanotechnology ; 31(7): 075301, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31725410

RESUMO

It has been shown in the past that fractal geometries are beneficial for radio and communication antenna designs in terms of bandwidth and gain. Recently, this concept was extended to plasmonic nanoantennas. Here, we present a fabrication method based on electron beam lithography and focused helium ion beam milling to further miniaturize dimer nanoantennas of 0th, 1st and 2nd order Sierpinski fractals. With this state-of-the-art approach, it becomes feasible to experimentally move their resonance conditions into the sub-micron wavelength regime, while maintaining excellent pattern definition and achieving sub-10 nm gap sizes for high near-field enhancement. These highly sophisticated nanostructures are numerically simulated and analyzed by dark-field scattering spectroscopy to monitor the effects of the fractal structuring on the scattering spectra and near-field enhancement.

4.
Anal Bioanal Chem ; 412(14): 3405-3411, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31919613

RESUMO

Using the localized surface plasmon resonance (LSPR) of gold nanoparticles for sensing applications has attracted considerable interest, since it can be very sensitive, even down to a single molecule, and selective for a specific analyte molecule with a suitable surface modification. LSPR sensing is usually based on the wavelength shift of the LSPR or a Fano resonance. Here, we present a new experimental approach based on the phase of the light scattered by a single gold nanoparticle by equipping a confocal microscope with an additional interferometer arm similar to a Michelson interferometer. The detected phase depends on the shape of the nanoparticle and the refractive index of the surrounding medium and can even be detected for off-resonant excitation. This can be used as a new and sensitive detection method in LSPR sensing, allowing the detection of changes to the local refractive index or the binding of molecules to the nanoparticle surface.

5.
Nanotechnology ; 30(23): 235302, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30907377

RESUMO

Milling with the focused helium ion beam of a helium ion microscope is one of the most accurate ways to produce nano-structures such as plasmonic nanoantennas. In addition to good and immediate control of the dimensions, features in the sub-10 nm regime are achievable. Especially small gaps and sharp tips in this regime may lead to very high field enhancement under excitation. However, the milling rate of 30 keV helium ions is rather low, making it time-consuming to cut nano-structures out of a gold film. We present two processes to work around the low milling rate to obtain arrays of nano-structures with maximum precision within a reasonable time. These strategies can both be adapted to either poly-crystalline gold films or single-crystalline gold flakes. Using single crystals from a fabrication point of view enables even higher precision due to constant etch rates over the whole crystal as well as straight edges and vertical side-walls due to the uniform crystalline structure.

6.
Nano Converg ; 10(1): 15, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997831

RESUMO

Nanorings (NRs) with their intrinsic cavities have attracted interest as plasmonic nanoparticles for years, due to the uniform electric field enhancement inside the cavity, lower plasmon damping effects and comparatively high refractive index sensitivities. In the present work, we successfully fabricated a series of Au NR arrays on flexible polydimethylsiloxane substrates by taking advantage of state-of-the-art fabrication methods such as electron beam lithography and wet-etching transfer techniques. In-situ optical measurements on these flexible systems are enabled by implementing a homemade micro-stretcher inside an optical reflection spectroscopy setup. The corresponding dark-field spectra of thin-walled NR arrays exhibit a strong shift to longer wavelengths (i.e., ~ 2.85 nm per 1% strain) under polarization perpendicular to the traction, mainly resulting from the increasing shape deformation of the NRs under strain. Moreover, numerical simulations illustrate that the shifting plasmonic mode has a radially-symmetric charge distribution of the bonding mode and is rather sensitive to the tuning of the NRs' shape as confirmed by a subsequent in-situ scanning electron microscope characterization. These results explore the possibilities of shape-altering flexible plasmonics for nanoparticles with a cavity and indicate potential applications for plasmonic colors and biochemical sensing in future work.

7.
Nanoscale ; 15(27): 11707-11713, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37387269

RESUMO

Utilizing strong light-matter coupling is an elegant and powerful way to modify the energy landscapes of excited states of organic semiconductors. Consequently, the chemical and photophysical properties of these organic semiconductors can be influenced without the need of chemical modification but simply by implementing them in optical microcavities. This has so far mostly been shown in Fabry-Pérot cavities and with organic single crystals or diluted molecules in a host matrix. Here, we demonstrate strong, simultaneous coupling of the two Davydov transitions in polycrystalline pentacene thin films to surface lattice resonances supported by open cavities made of silver nanoparticle arrays. Such thin films are more easily fabricated and, together with the open architecture, more suitable for device applications.

8.
Nanoscale ; 12(2): 1083-1090, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31845942

RESUMO

In this work, we present a novel technique to directly measure the phase shift of the optical signal scattered by single plasmonic nanoparticles in a diffraction-limited laser focus. We accomplish this by equipping an inverted confocal microscope with a Michelson interferometer and scanning single nanoparticles through the focal volume while recording for each pixel interferograms of the scattered and a reference wave. For the experiments, lithographically prepared gold nanorods were used, since their plasmon resonances can be controlled via their aspect ratio. We have developed a theoretical model for image formation in confocal scattering microscopy for nanoparticles considerably smaller than the diffraction limited focus. We show that the phase shift observed for particles with different longitudinal particle plasmon resonances can be well explained by the harmonic oscillator model. The direct measurement of the phase shift can further improve the understanding of the elastic scattering of individual gold nanoparticles with respect to their plasmonic properties.

9.
Nanoscale ; 12(37): 19170-19177, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926034

RESUMO

Plasmonic nanostructures serve as optical antennas for concentrating the energy of incoming light in localized hotspots close to their surface. By positioning nanoemitters in the antenna hotspots, energy transfer is enabled, leading to novel hybrid antenna-emitter-systems, where the antenna can be used to manipulate the optical properties of the nano-objects. The challenge remains how to precisely position emitters within the hotspots. We report a self-aligned process based on dry laser ablation of a calixarene that enables the attachment of molecules within the electromagnetic hotspots at the tips of gold nanocones. Within the laser focus, the ablation threshold is exceeded in nanoscale volumes, leading to selective access of the hotspot areas. A first indication of the site-selective functionalization process is given by attaching fluorescently labelled proteins to the nanocones. In a second example, Raman-active molecules are selectively attached only to nanocones that were previously exposed in the laser focus, which is verified by surface enhanced Raman spectroscopy. Enabling selective functionalization is an important prerequisite e.g. for preparing single photon sources for quantum optical technologies, or multiplexed Raman sensing platforms.

10.
Adv Mater ; 32(36): e2002254, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32725688

RESUMO

The assembly of colloidal semiconductive nanocrystals into highly ordered superlattices predicts novel structure-related properties by design. However, those structure-property relationships, such as charge transport depending on the structure or even directions of the superlattice, have remained unrevealed so far. Here, electric transport measurements and X-ray nanodiffraction are performed on self-assembled lead sulfide nanocrystal superlattices to investigate direction-dependent charge carrier transport in microscopic domains of these materials. By angular X-ray cross-correlation analysis, the structure and orientation of individual superlattices is determined, which are directly correlated with the electronic properties of the same microdomains. By that, strong evidence for the effect of superlattice crystallinity on the electric conductivity is found. Further, anisotropic charge transport in highly ordered monocrystalline domains is revealed, which is attributed to the dominant effect of shortest interparticle distance. This implies that transport anisotropy should be a general feature of weakly coupled nanocrystal superlattices.

11.
Nanoscale ; 10(31): 14915-14922, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30044459

RESUMO

As a multifunctional device for sensing experiments and fundamental research, tailor-made plasmonic nanostructures with continuously tunable resonances are created by preparing bow tie-shaped nanostructures on a flexible substrate. The bow ties are fabricated by electron beam lithography on a chromium sacrificial layer and transferred to a polydimethylsiloxane (PDMS) substrate. The structures on PDMS are analyzed by reflection dark-field spectroscopy and scanning electron microscopy. Dark-field spectra of individual nano-antennas are obtained while the substrate is relaxed, and while strain is applied and the substrate is elastically stretched. Depending on the alignment of the bow ties relative to the direction of the strain, the deformation of the substrates leads to an increase or decrease of the nanostructure gaps, and therefore to a fully reversible decrease or increase of the antenna coupling, respectively. The continuous change in coupling is visible as a blue-shift in the resonance of the coupling mode for increasing gap widths, and a red-shift for decreasing gap widths. This configuration offers interesting perspectives for molecular transport and sensing investigations under variable coupling conditions as well as for tunable SERS substrates and optical strain sensor applications. In particular, very narrow gaps are within reach in the transversal configuration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA