Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 411, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496770

RESUMO

BACKGROUND: The phytohormone ethylene controls many processes in plant development and acts as a key signaling molecule in response to biotic and abiotic stresses: it is rapidly induced by flooding, wounding, drought, and pathogen attack as well as during abscission and fruit ripening. In kiwifruit (Actinidia spp.), fruit ripening is characterized by two distinct phases: an early phase of system-1 ethylene biosynthesis characterized by absence of autocatalytic ethylene, followed by a late burst of autocatalytic (system-2) ethylene accompanied by aroma production and further ripening. Progress has been made in understanding the transcriptional regulation of kiwifruit fruit ripening but the regulation of system-1 ethylene biosynthesis remains largely unknown. The aim of this work is to better understand the transcriptional regulation of both systems of ethylene biosynthesis in contrasting kiwifruit organs: fruit and leaves. RESULTS: A detailed molecular study in kiwifruit (A. chinensis) revealed that ethylene biosynthesis was regulated differently between leaf and fruit after mechanical wounding. In fruit, wound ethylene biosynthesis was accompanied by transcriptional increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO) and members of the NAC class of transcription factors (TFs). However, in kiwifruit leaves, wound-specific transcriptional increases were largely absent, despite a more rapid induction of ethylene production compared to fruit, suggesting that post-transcriptional control mechanisms in kiwifruit leaves are more important. One ACS member, AcACS1, appears to fulfil a dominant double role; controlling both fruit wound (system-1) and autocatalytic ripening (system-2) ethylene biosynthesis. In kiwifruit, transcriptional regulation of both system-1 and -2 ethylene in fruit appears to be controlled by temporal up-regulation of four NAC (NAM, ATAF1/2, CUC2) TFs (AcNAC1-4) that induce AcACS1 expression by directly binding to the AcACS1 promoter as shown using gel-shift (EMSA) and by activation of the AcACS1 promoter in planta as shown by gene activation assays combined with promoter deletion analysis. CONCLUSIONS: Our results indicate that in kiwifruit the NAC TFs AcNAC2-4 regulate both system-1 and -2 ethylene biosynthesis in fruit during wounding and ripening through control of AcACS1 expression levels but not in leaves where post-transcriptional/translational regulatory mechanisms may prevail.


Assuntos
Actinidia/genética , Etilenos/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Actinidia/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Liases/genética , Liases/metabolismo , Solanum lycopersicum/genética , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
2.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201662

RESUMO

Gene expression and phytohormone contents were measured in response to elevating ascorbate in the absence of other confounding stimuli such as high light and abiotic stresses. Young Arabidopsis plants were treated with 25 mM solutions of l-galactose pathway intermediates l-galactose (l-gal) or l-galactono-1,4-lactone (l-galL), as well as L-ascorbic acid (AsA), with 25 mM glucose used as control. Feeding increased rosette AsA 2- to 4-fold but there was little change in AsA biosynthetic gene transcripts. Of the ascorbate recycling genes, only Dehydroascorbate reductase 1 expression was increased. Some known regulatory genes displayed increased expression and included ANAC019, ANAC072, ATHB12, ZAT10 and ZAT12. Investigation of the ANAC019/ANAC072/ATHB12 gene regulatory network revealed a high proportion of ABA regulated genes. Measurement of a subset of jasmonate, ABA, auxin (IAA) and salicylic acid compounds revealed consistent increases in ABA (up to 4.2-fold) and phaseic acid (PA; up to 5-fold), and less consistently certain jasmonates, IAA, but no change in salicylic acid levels. Increased ABA is likely due to increased transcripts for the ABA biosynthetic gene NCED3. There were also smaller increases in transcripts for transcription factors ATHB7, ERD1, and ABF3. These results provide insights into how increasing AsA content can mediate increased abiotic stress tolerance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Ácido Ascórbico/metabolismo , Glutationa Transferase/genética , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Ascorbato Oxidase/genética , Ascorbato Oxidase/metabolismo , Ácido Ascórbico/genética , Ciclopentanos/metabolismo , Galactose/farmacologia , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Glutationa Transferase/metabolismo , Ácidos Hexurônicos/metabolismo , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/genética , Sesquiterpenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
BMC Genomics ; 19(1): 257, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661190

RESUMO

BACKGROUND: Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. RESULTS: A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. CONCLUSIONS: Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.


Assuntos
Actinidia/genética , Genoma de Planta , Genes de Plantas , Genótipo , Anotação de Sequência Molecular , Proteínas de Plantas/genética
4.
Plant Cell ; 27(3): 772-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25724639

RESUMO

Ascorbate (vitamin C) is an essential antioxidant and enzyme cofactor in both plants and animals. Ascorbate concentration is tightly regulated in plants, partly to respond to stress. Here, we demonstrate that ascorbate concentrations are determined via the posttranscriptional repression of GDP-l-galactose phosphorylase (GGP), a major control enzyme in the ascorbate biosynthesis pathway. This regulation requires a cis-acting upstream open reading frame (uORF) that represses the translation of the downstream GGP open reading frame under high ascorbate concentration. Disruption of this uORF stops the ascorbate feedback regulation of translation and results in increased ascorbate concentrations in leaves. The uORF is predicted to initiate at a noncanonical codon (ACG rather than AUG) and encode a 60- to 65-residue peptide. Analysis of ribosome protection data from Arabidopsis thaliana showed colocation of high levels of ribosomes with both the uORF and the main coding sequence of GGP. Together, our data indicate that the noncanonical uORF is translated and encodes a peptide that functions in the ascorbate inhibition of translation. This posttranslational regulation of ascorbate is likely an ancient mechanism of control as the uORF is conserved in GGP genes from mosses to angiosperms.


Assuntos
Arabidopsis/genética , Ácido Ascórbico/biossíntese , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Fases de Leitura Aberta/genética , Regiões 5' não Traduzidas/genética , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Códon/genética , Regulação para Baixo/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Galactose/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Luciferases/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Fosfotransferases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo
5.
New Phytol ; 211(4): 1279-94, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27214242

RESUMO

Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as ß-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and ß-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, ß-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis.


Assuntos
Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/metabolismo , Frutas/enzimologia , Transferases Intramoleculares/metabolismo , Malus/enzimologia , Triterpenos/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas/genética , Clonagem Molecular , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Malus/genética , Filogenia , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Análise de Componente Principal , Alinhamento de Sequência , Análise de Sequência de Proteína , Esqualeno/análogos & derivados , Esqualeno/química , Esqualeno/metabolismo , Nicotiana/genética , Triterpenos/química
6.
New Phytol ; 208(4): 1188-201, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26377591

RESUMO

The transcriptional regulation of four phylogenetically distinct members of a family of Kunitz proteinase inhibitor (KPI) genes isolated from white clover (Trifolium repens; designated Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5) has been investigated to determine their wider functional role. The four genes displayed differential transcription during seed germination, and in different tissues of the mature plant, and transcription was also ontogenetically regulated. Heterologous over-expression of Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5 in Nicotiana tabacum retarded larval growth of the herbivore Spodoptera litura, and an increase in the transcription of the pathogenesis-related genes PR1 and PR4 was observed in the Tr-KPI1 and Tr-KPI4 over-expressing lines. RNA interference (RNAi) knock-down lines in white clover displayed significantly altered vegetative growth phenotypes with inhibition of shoot growth and a stimulation of root growth, while knock-down of Tr-KPI1, Tr-KPI2 and Tr-KPI5 transcript abundance also retarded larval growth of S. litura. Examination of these RNAi lines revealed constitutive stress-associated phenotypes as well as altered transcription of cellular signalling genes. These results reveal a functional redundancy across members of the KPI gene family. Further, the regulation of transcription of at least one member of the family, Tr-KPI2, may occupy a central role in the maintenance of a cellular homeostasis.


Assuntos
Genes de Plantas , Família Multigênica , Peptídeo Hidrolases/metabolismo , Peptídeos/genética , Fenótipo , Proteínas de Plantas/genética , Transcrição Gênica , Trifolium/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Peptídeos/metabolismo , Filogenia , Doenças das Plantas/genética , Folhas de Planta , Proteínas de Plantas/metabolismo , Raízes de Plantas , Interferência de RNA , Transdução de Sinais , Estresse Fisiológico , Nicotiana/genética , Nicotiana/metabolismo , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo
7.
J Nutr ; 144(2): 146-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24353343

RESUMO

Apples are rich in polyphenols, which provide antioxidant properties, mediation of cellular processes such as inflammation, and modulation of gut microbiota. In this study we compared genetically engineered apples with increased flavonoids [myeloblastis transcription factor 10 (MYB10)] with nontransformed apples from the same genotype, "Royal Gala" (RG), and a control diet with no apple. Compared with the RG diet, the MYB10 diet contained elevated concentrations of the flavonoid subclasses anthocyanins, flavanol monomers (epicatechin) and oligomers (procyanidin B2), and flavonols (quercetin glycosides), but other plant secondary metabolites were largely unaltered. We used these apples to investigate the effects of dietary flavonoids on inflammation and gut microbiota in 2 mouse feeding trials. In trial 1, male mice were fed a control diet or diets supplemented with 20% MYB10 apple flesh and peel (MYB-FP) or RG apple flesh and peel (RG-FP) for 7 d. In trial 2, male mice were fed MYB-FP or RG-FP diets or diets supplemented with 20% MYB10 apple flesh or RG apple flesh for 7 or 21 d. In trial 1, the transcription levels of inflammation-linked genes in mice showed decreases of >2-fold for interleukin-2 receptor (Il2rb), chemokine receptor 2 (Ccr2), chemokine ligand 10 (Cxcl10), and chemokine receptor 10 (Ccr10) at 7 d for the MYB-FP diet compared with the RG-FP diet (P < 0.05). In trial 2, the inflammation marker prostaglandin E(2) (PGE(2)) in the plasma of mice fed the MYB-FP diet at 21 d was reduced by 10-fold (P < 0.01) compared with the RG-FP diet. In colonic microbiota, the number of total bacteria for mice fed the MYB-FP diet was 6% higher than for mice fed the control diet at 21 d (P = 0.01). In summary, high-flavonoid apple was associated with decreases in some inflammation markers and changes in gut microbiota when fed to healthy mice.


Assuntos
Colo/efeitos dos fármacos , Dieta , Flavonoides/uso terapêutico , Alimentos Geneticamente Modificados , Inflamação/prevenção & controle , Malus/química , Microbiota/efeitos dos fármacos , Animais , Antocianinas/farmacologia , Antocianinas/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Biomarcadores/sangue , Catequina/farmacologia , Catequina/uso terapêutico , Colo/microbiologia , Suplementos Nutricionais , Flavonoides/farmacologia , Frutas/química , Genótipo , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Inflamação/sangue , Inflamação/genética , Mediadores da Inflamação/sangue , Masculino , Malus/genética , Camundongos , Camundongos Endogâmicos , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Plantas Geneticamente Modificadas , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico , Valores de Referência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transformação Genética
8.
Plant Physiol ; 160(3): 1613-29, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23001142

RESUMO

To identify the genetic factors underlying the regulation of fruit vitamin C (L-ascorbic acid [AsA]) concentrations, quantitative trait loci (QTL) studies were carried out in an F1 progeny derived from a cross between the apple (Malus × domestica) cultivars Telamon and Braeburn over three years. QTL were identified for AsA, glutathione, total antioxidant activity in both flesh and skin tissues, and various quality traits, including flesh browning. Four regions on chromosomes 10, 11, 16, and 17 contained stable fruit AsA-QTL clusters. Mapping of AsA metabolic genes identified colocations between orthologs of GDP-L-galactose phosphorylase (GGP), dehydroascorbate reductase (DHAR), and nucleobase-ascorbate transporter within these QTL clusters. Of particular interest are the three paralogs of MdGGP, which all colocated within AsA-QTL clusters. Allelic variants of MdGGP1 and MdGGP3 derived from the cultivar Braeburn parent were also consistently associated with higher fruit total AsA concentrations both within the mapping population (up to 10-fold) and across a range of commercial apple germplasm (up to 6-fold). Striking differences in the expression of the cv Braeburn MdGGP1 allele between fruit from high- and low-AsA genotypes clearly indicate a key role for MdGGP1 in the regulation of fruit AsA concentrations, and this MdGGP allele-specific single-nucleotide polymorphism marker represents an excellent candidate for directed breeding for enhanced fruit AsA concentrations. Interestingly, colocations were also found between MdDHAR3-3 and a stable QTL for browning in the cv Telamon parent, highlighting links between the redox status of the AsA pool and susceptibility to flesh browning.


Assuntos
Alelos , Ácido Ascórbico/metabolismo , Frutas/genética , Malus/enzimologia , Malus/genética , Monoéster Fosfórico Hidrolases/genética , Homologia de Sequência de Aminoácidos , Antioxidantes/metabolismo , Sequência de Bases , Vias Biossintéticas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Estudos de Associação Genética , Variação Genética , Glutationa/metabolismo , Guanosina Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/química , Folhas de Planta/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável
9.
J Proteome Res ; 11(2): 1065-77, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22106967

RESUMO

Inflammatory bowel disease (IBD) is characterized by intestinal inflammation and is believed to involve complex interactions between genetic, immunological, and environmental factors. We measured changes in the proteome associated with bacterially induced intestinal inflammation in the interleukin 10 gene-deficient (Il10(-/-)) mouse model of IBD, established effects of the dietary polyunsaturated fatty acids (PUFAs) n-3 eicosapentaenoic acid (EPA) and n-6 arachidonic acid (AA) on protein expression (using oleic acid as a control fatty acid), and compared these changes with previously observed transcriptome changes in the same model. Ingenuity pathways analysis of proteomics data showed bacterially induced inflammation was associated with reduced expression of proteins from pathways of metabolism and digestion/absorption/excretion of nutrients/ions, and increased expression of cellular stress and immune response proteins. Both PUFA treatments showed anti-inflammatory activity; EPA appeared to act via the PPARα pathway, whereas AA appeared to increase energy metabolism and cytoskeletal organization and reduce cellular stress responses, possibly enabling a more robust response to inflammation. While there was agreement between proteomic and transcriptomic data with respect to pathways, there was limited concordance between individual gene and protein data, reflecting the importance of having both gene and protein data to better understand complex diseases such as IBD.


Assuntos
Colo/efeitos dos fármacos , Colo/metabolismo , Gorduras Insaturadas na Dieta/farmacologia , Interleucina-10/deficiência , Proteoma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Ácido Araquidônico/metabolismo , Análise por Conglomerados , Colo/química , Gorduras Insaturadas na Dieta/metabolismo , Ácido Eicosapentaenoico/metabolismo , Perfilação da Expressão Gênica , Inflamação , Interleucina-10/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Oleico/metabolismo , Proteínas , Proteômica
10.
BMC Plant Biol ; 12: 12, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22269060

RESUMO

BACKGROUND: The polyphenolic products of the phenylpropanoid pathway, including proanthocyanidins, anthocyanins and flavonols, possess antioxidant properties that may provide health benefits. To investigate the genetic architecture of control of their biosynthesis in apple fruit, various polyphenolic compounds were quantified in progeny from a 'Royal Gala' × 'Braeburn' apple population segregating for antioxidant content, using ultra high performance liquid chromatography of extracts derived from fruit cortex and skin. RESULTS: Construction of genetic maps for 'Royal Gala' and 'Braeburn' enabled detection of 79 quantitative trait loci (QTL) for content of 17 fruit polyphenolic compounds. Seven QTL clusters were stable across two years of harvest and included QTLs for content of flavanols, flavonols, anthocyanins and hydroxycinnamic acids. Alignment of the parental genetic maps with the apple whole genome sequence in silico enabled screening for co-segregation with the QTLs of a range of candidate genes coding for enzymes in the polyphenolic biosynthetic pathway. This co-location was confirmed by genetic mapping of markers derived from the gene sequences. Leucoanthocyanidin reductase (LAR1) co-located with a QTL cluster for the fruit flavanols catechin, epicatechin, procyanidin dimer and five unknown procyanidin oligomers identified near the top of linkage group (LG) 16, while hydroxy cinnamate/quinate transferase (HCT/HQT) co-located with a QTL for chlorogenic acid concentration mapping near the bottom of LG 17. CONCLUSION: We conclude that LAR1 and HCT/HQT are likely to influence the concentration of these compounds in apple fruit and provide useful allele-specific markers for marker assisted selection of trees bearing fruit with healthy attributes.


Assuntos
Mapeamento Cromossômico , Frutas/química , Malus/genética , Polifenóis/análise , Locos de Características Quantitativas , Antioxidantes/análise , DNA de Plantas/genética , Genoma de Planta , Malus/química , Fenótipo , Polimorfismo de Nucleotídeo Único
11.
Plant Biotechnol J ; 10(4): 390-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22129455

RESUMO

Ascorbate, or vitamin C, is obtained by humans mostly from plant sources. Various approaches have been made to increase ascorbate in plants by transgenic means. Most of these attempts have involved leaf material from model plants, with little success reported using genes from the generally accepted l-galactose pathway of ascorbate biosynthesis. We focused on increasing ascorbate in commercially significant edible plant organs using a gene, GDP-l-galactose phosphorylase (GGP or VTC2), that we had previously shown to increase ascorbate concentration in tobacco and Arabidopsis thaliana. The coding sequence of Actinidia chinensis GGP, under the control of the 35S promoter, was expressed in tomato and strawberry. Potato was transformed with potato or Arabidopsis GGP genes under the control of the 35S promoter or a polyubiquitin promoter (potato only). Five lines of tomato, up to nine lines of potato, and eight lines of strawberry were regenerated for each construct. Three lines of tomato had a threefold to sixfold increase in fruit ascorbate, and all lines of strawberry showed a twofold increase. All but one line of each potato construct also showed an increase in tuber ascorbate of up to threefold. Interestingly, in tomato fruit, increased ascorbate was associated with loss of seed and the jelly of locular tissue surrounding the seed which was not seen in strawberry. In both strawberry and tomato, an increase in polyphenolic content was associated with increased ascorbate. These results show that GGP can be used to raise significantly ascorbate concentration in commercially significant edible crops.


Assuntos
Ácido Ascórbico/metabolismo , Vias Biossintéticas/genética , Frutas/metabolismo , Galactose/metabolismo , Guanosina Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/genética , Tubérculos/metabolismo , Actinidia/enzimologia , Sequência de Aminoácidos , Fragaria/genética , Frutas/anatomia & histologia , Frutas/enzimologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Solanum lycopersicum/genética , Dados de Sequência Molecular , Tamanho do Órgão , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/enzimologia , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Solanum tuberosum/genética
12.
Br J Nutr ; 108(1): 113-29, 2012 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-22152591

RESUMO

Inflammatory bowel disease (IBD) is a collective term for conditions characterised by chronic inflammation of the gastrointestinal tract involving an inappropriate immune response to commensal micro-organisms in a genetically susceptible host. Previously, aqueous and ethyl acetate extracts of gold kiwifruit (Actinidia chinensis) or green kiwifruit (A. deliciosa) have demonstrated anti-inflammatory activity using in vitro models of IBD. The present study examined whether these kiwifruit extracts (KFE) had immune-modulating effects in vivo against inflammatory processes that are known to be increased in patients with IBD. KFE were used as a dietary intervention in IL-10-gene-deficient (Il10(-/-)) mice (an in vivo model of IBD) and the C57BL/6J background strain in a 3 × 2 factorial design. While all Il10(-/-) mice developed significant colonic inflammation compared with C57BL/6J mice, this was not affected by the inclusion of KFE in the diet. These findings are in direct contrast to our previous study where KFE reduced inflammatory signalling in primary cells isolated from Il10(-/-) and C57BL/6J mice. Whole-genome gene and protein expression level profiling indicated that KFE influenced immune signalling pathways and metabolic processes within the colonic tissue; however, the effects were subtle. In particular, expression levels across gene sets related to adaptive immune pathways were significantly reduced using three of the four KFE in C57BL/6J mice. The present study highlights the importance of investigating food components identified by cell-based assays with appropriate in vivo models before making dietary recommendations, as a food that looks promising in vitro may not be effective in vivo.


Assuntos
Actinidia/química , Colo/efeitos dos fármacos , Frutas/química , Interleucina-10/genética , Interleucina-10/metabolismo , Extratos Vegetais/farmacologia , Animais , Colo/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Extratos Vegetais/química , Proteínas/classificação , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
J Biol Chem ; 285(35): 27019-27025, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20538608

RESUMO

The squash aspartic acid proteinase inhibitor (SQAPI), a proteinaceous proteinase inhibitor from squash, is an effective inhibitor of a range of aspartic proteinases. Proteinaceous aspartic proteinase inhibitors are rare in nature. The only other example in plants probably evolved from a precursor serine proteinase inhibitor. Earlier work based on sequence homology modeling suggested SQAPI evolved from an ancestral cystatin. In this work, we determined the solution structure of SQAPI using NMR and show that SQAPI shares the same fold as a plant cystatin. The structure is characterized by a four-strand anti-parallel beta-sheet gripping an alpha-helix in an analogous manner to fingers of a hand gripping a tennis racquet. Truncation and site-specific mutagenesis revealed that the unstructured N terminus and the loop connecting beta-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. Using ambiguous restraints based on the mutagenesis results, SQAPI was then docked computationally to pepsin. The resulting model places the N-terminal strand of SQAPI in the S' side of the substrate binding cleft, whereas the first SQAPI loop binds on the S side of the cleft. The backbone of SQAPI does not interact with the pepsin catalytic Asp(32)-Asp(215) diad, thus avoiding cleavage. The data show that SQAPI does share homologous structural elements with cystatin and appears to retain a similar protease inhibitory mechanism despite its different target. This strongly supports our hypothesis that SQAPI evolved from an ancestral cystatin.


Assuntos
Cucurbita/química , Proteínas de Plantas/química , Inibidores de Proteases/química , Sítios de Ligação , Cistatinas/química , Cistatinas/genética , Ressonância Magnética Nuclear Biomolecular , Pepsina A/química , Pepsina A/genética , Proteínas de Plantas/genética , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
14.
Cell Immunol ; 270(1): 70-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21600571

RESUMO

Inflammatory bowel disease (IBD) is a chronic, inflammatory disorder of the gastrointestinal tract involving an inappropriate immune response to commensal microorganisms in a genetically susceptible host. This study examined the effects of aqueous and ethyl acetate extracts of gold kiwifruit (Actinidia chinensis) or green kiwifruit (Actinidia deliciosa) using in vitro models of IBD. These models comprised primary macrophages and intestinal epithelial cells isolated from C57BL/5J and interleukin-10 gene deficient (Il10(-/-)) mice and RAW 264.7, a murine macrophage-like cell line. All four kiwifruit extracts reduced the activation of these models after lipopolysaccharide stimulation, decreasing nitric oxide and cytokine secretion by both Il10(-/-) and wild-type cells. The ethyl acetate extracts exhibited the highest anti-inflammatory activity, with almost complete suppression of lipopolysaccharide-stimulated macrophage activation. These results suggest that kiwifruit extracts have significant anti-inflammatory activity relevant to IBD. We suggest that the Il10(-/-) mouse is a suitable model for further study of these compounds.


Assuntos
Actinidia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Interleucina-10/deficiência , Interleucina-10/genética , Ativação de Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Citocinas/biossíntese , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Interleucina-10/metabolismo , Mucosa Intestinal/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/biossíntese , Fitoterapia
15.
J Agric Food Chem ; 69(3): 966-973, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33434024

RESUMO

2-O-ß-d-Glucopyranosyl l-ascorbic acid (AA-2ßG) is a stable, bioavailable vitamin C (AA) derivative. We report the distribution and seasonal variation of AA-2ßG in apples and its occurrence in other domesticated crops and in wild harvested Ma̅ori foods. Liquid chromatography-mass spectrometry analyses showed high AA-2ßG concentrations in crab apples (Malus sylvestris) but low concentrations in domesticated apples. Leaves of crab and domesticated apple cultivars contained similar intermediate AA-2ßG concentrations. Fruits and leaves of other crops were analyzed: mainly Rosaceae but also Actinidiaceae and Ericaceae. AA-2ßG was detected in all leaves (0.5-6.1 mg/100 g fr. wt.) but was at lower concentrations in most fruits (0.0-0.5 mg/100 g fr. wt.) except for crab apples (79.4 mg/100 g fr. wt.). Ma̅ori foods from Solanaceae, Piperaceae, Asteraceae, and a fern of Aspleniaceae also contained AA-2ßG. This extensive occurrence suggests a general role in AA metabolism for AA-2ßG.


Assuntos
Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Produtos Agrícolas/química , Malus/química , Produtos Agrícolas/metabolismo , Frutas/química , Frutas/metabolismo , Malus/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo
16.
Nutrients ; 13(4)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801641

RESUMO

Polyphenols within fruits and vegetables may contribute to health benefits due to their consumption, with the anthocyanin sub-set also adding colour. The Lemonade™ apple variety has green skin and white flesh, with low anthocyanin content, while some apple varieties have high anthocyanin content in both the skin and flesh. Effects of red compared with white-fleshed apples were studied in healthy human subjects in a randomized, placebo-controlled, cross-over intervention trial. Twenty-five healthy subjects consumed dried daily portions of the red-fleshed or placebo (white-fleshed) apple for two weeks, followed by one-week washout and further two-week crossover period. During the study, volunteers provided faecal samples for microbiota composition analysis and blood samples for peripheral blood mononuclear cell (PBMC) gene expression analysis. Subtle differences were observed in the faecal microbiota of subjects that were fed the different apples, with significant (p < 0.05) reductions in relative abundances of Streptococcus, Ruminococcus, Blautia, and Roseburia, and increased relative abundances of Sutterella, Butyricicoccus, and Lactobacillus in subjects after consuming the red apple. Changes in PBMC gene expression showed 18 mRNA transcripts were differentially expressed between the two groups, of which 16 were immunoglobulin related genes. Pathway analysis showed that these genes had roles in pathways such as immunoglobulin production, B cell-mediated immunity, complement activation, and phagocytosis. In conclusion, this study shows that anthocyanin-rich apples may influence immune function compared to control apples, with changes potentially associated with differences in the faecal microbiota.


Assuntos
Fezes/microbiologia , Frutas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Malus/química , Polifenóis/farmacologia , Adulto , Estudos Cross-Over , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Polifenóis/química , Adulto Jovem
17.
Anal Biochem ; 402(2): 137-45, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20361923

RESUMO

A high-throughput, homogeneous, fluorescence polarization, and fluorescence intensity assay has been developed for the measurement of folate in fruits and vegetables. This assay is based on the competitive displacement of the fluorescent folate ligands Alexa Fluor (Alexa) 594-folate and Alexa 660-folate from bovine milk folate-binding protein by folates in fruit and vegetable extracts. These fluorescent ligands are employed because their excitation and emission maxima are in regions of the spectrum with minimal autofluorescence in many extracts. Folate-binding protein and Alexa-folate were typically used at concentrations of 0.5 microg/ml and 5nM, respectively, in 20-microl volumes in 384-well microplates. The assay is complete within 100 min. The folate estimate is unaffected by the heterogeneity of polyglutamyl residues that complicates the liquid chromatography-mass spectrometry (LC-MS)-based methods of quantification. In this assay, folic acid had an apparent affinity 2.5-fold greater than 5-methyltetrahydrofolate (5MTHF); therefore, it cannot be used to quantify folate when both natural and synthetic folate are present. 5MTHF-equivalent values were measured in broccoli (240 microg/100g), strawberry (113 microg/100g), white grape (32 microg/100g), orange (44 microg/100g), tomato (12 microg/100g), raspberry (31 microg/100g), banana (29 microg/g), and kiwifruit (36 microg/100g). These data are similar to published values. However, the assay will not detect 5-formyltetrahydrofolate which is a significant constituent of the total folate in lettuce, spinach, carrot, and peppers.


Assuntos
Ácido Fólico/análise , Frutas/química , Verduras/química , Animais , Ligação Competitiva , Proteínas de Transporte/metabolismo , Bovinos , Cromatografia Líquida de Alta Pressão/métodos , Etilenodiaminas/química , Receptores de Folato com Âncoras de GPI , Ácido Fólico/química , Leite/química , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Receptores de Superfície Celular/metabolismo , Espectrometria de Fluorescência/métodos
18.
Trends Plant Sci ; 13(3): 99-102, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18280199

RESUMO

Anthocyanin concentration is a primary determinant of plant colour. Fruit anthocyanin biosynthesis is controlled by a distinct clade of R2R3 MYB transcription factors. In apple, three recent papers describe the discovery of MYB genes activating skin, flesh and foliage anthocyanic colour. These findings lead the way to new approaches in the breeding and biotechnological development of fruit with new colour patterns.


Assuntos
Frutas/fisiologia , Pigmentação/fisiologia , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Antocianinas/metabolismo , Frutas/metabolismo , Malus/metabolismo , Malus/fisiologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/genética , Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
J Exp Bot ; 60(3): 765-78, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19129165

RESUMO

Vitamin C (L-ascorbic acid, AsA) is an essential metabolite for plants and animals. Kiwifruit (Actinidia spp.) are a rich dietary source of AsA for humans. To understand AsA biosynthesis in kiwifruit, AsA levels and the relative expression of genes putatively involved in AsA biosynthesis, regeneration, and transport were correlated by quantitative polymerase chain reaction in leaves and during fruit development in four kiwifruit genotypes (three species; A. eriantha, A. chinensis, and A. deliciosa). During fruit development, fruit AsA concentration peaked between 4 and 6 weeks after anthesis with A. eriantha having 3-16-fold higher AsA than other genotypes. The rise in AsA concentration typically occurred close to the peak in expression of the L-galactose pathway biosynthetic genes, particularly the GDP-L-galactose guanyltransferase gene. The high concentration of AsA found in the fruit of A. eriantha is probably due to higher expression of the GDP-mannose-3',5'-epimerase and GDP-L-galactose guanyltransferase genes. Over-expression of the kiwifruit GDP-L-galactose guanyltransferase gene in Arabidopsis resulted in up to a 4-fold increase in AsA, while up to a 7-fold increase in AsA was observed in transient expression studies where both GDP-L-galactose guanyltransferase and GDP-mannose-3',5'-epimerase genes were co-expressed. These studies show the importance of GDP-L-galactose guanyltransferase as a rate-limiting step to AsA, and demonstrate how AsA can be significantly increased in plants.


Assuntos
Actinidia/enzimologia , Actinidia/genética , Arabidopsis/metabolismo , Ácido Ascórbico/biossíntese , Frutas/genética , Regulação da Expressão Gênica de Plantas , Nucleotidiltransferases/genética , Arabidopsis/genética , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Genótipo , Inositol/metabolismo , Nucleotidiltransferases/metabolismo , Oxirredução , Folhas de Planta/genética , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase , Nicotiana/metabolismo , Transformação Genética
20.
Int J Food Sci Nutr ; 60 Suppl 7: 251-64, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19548162

RESUMO

The present study investigates the production of gluten-free bread enhanced with polyphenols and related antioxidants derived from a natural aqueous extract from green-fleshed kiwifruit (Actinidia deliciosa). Puree and four aqueous extracts, produced from ripe green kiwifruit in the absence of artificial preservatives, were subjected to storage stability trials at 4 degrees C, 20 degrees C and 38 degrees C, and were chemically characterized (phenolic, vitamin C and pectic polysaccharide contents). The aqueous extract with good stability and high phenolic and vitamin C contents was used for gluten-free bread-making. The resultant kiwifruit extract-enhanced bread was acceptable to a taste panel, possessing softer and smoother texture than plain gluten-free bread. Thus, the aqueous extract of kiwifruit puree containing health-beneficial constituents can be considered a functional ingredient for gluten-free bread formulation.


Assuntos
Actinidia/química , Antioxidantes/análise , Pão/análise , Dieta Livre de Glúten , Flavonoides/análise , Alimento Funcional/análise , Fenóis/análise , Extratos Vegetais/análise , Ácido Ascórbico/análise , Comportamento do Consumidor , Flavonoides/isolamento & purificação , Manipulação de Alimentos/métodos , Frutas/química , Humanos , Concentração de Íons de Hidrogênio , Pectinas/análise , Fenóis/isolamento & purificação , Pigmentação , Extratos Vegetais/isolamento & purificação , Polifenóis , Sensação , Temperatura , Fatores de Tempo , Ácidos Urônicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA