Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
3 Biotech ; 14(9): 209, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39184913

RESUMO

Currently, numerous glycosides have been synthesized and used in clinical applications, neutraceuticals, cosmetics, and food processing. Structurally, a glycoside is composed of aglycone attaching to one or several sugar moieties so-called glycone. It is found that biochemical or biopharmaceutical properties of glycoside are mainly determined by its sugar part and thereby alternation of this glycone resulting in novel structure and characteristics as well. The use of traditional production methods of glycosides such as direct extraction and purification from plants, animals, or microorganisms is very challenging (laborious, time-consuming, technique, high price, low yield, etc.). Alternatively, the use of enzymatic methods for the biosynthesis of glycosides has become a highly promising tool. Particularly, the diverse structure of glycosides can be obtained using the promiscuous catalytic activity of glycosyltransferases (GT) mined from bioresources (plants, fungi, microorganisms, etc.). In addition, the exploration of GT catalytic promiscuity toward diverse aglycones, and glycones has indeed been interesting and played a key role in the production of novel glycosides. This review described the recent advances in glycosyltransferase-mediated glycodiversification of small molecules (flavonoids, steroids, terpenoids, etc.). Mostly, references were collected from 2014 to 2023.

2.
J Biosci Bioeng ; 116(2): 180-5, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23628218

RESUMO

This work is to explore the potential of producing biodiesel and valuable co-products from the biomass of Schizochytrium mangrovei PQ6 which was isolated from Phu Quoc Island, Kien Giang province, Vietnam. This microalga contains high lipid content (up to 70% of dry cell weight) and high level of total fatty acids, which is ideal for making biodiesel. The production of fatty acid methyl esters (FAME) from this marine microalga resulted in a yield of 88% based on algal oil and 44% based on algal biomass. The process of separating the obtained FAME into a first fraction enriched with saturated FAME (SFAME) and a second fraction enriched with unsaturated FAME (UFAME) was then investigated to exploit the valuable co-products. The obtained results shown that the mass fraction of SFAME and UFAME were 70% and 30%, respectively. The UFAME fraction contains a high content of DHA (accounting for 69.000% of TFAs). The test results of the SFAME fraction indicated that specific gravity at 15°C, flash point, water and sediment, kinematic viscosity at 40°C, sulfated ash, sulfur, copper strip corrosion at 50°C, cetane number, carbon residue, iodine number, workmanship meet Vietnam Biodiesel B100 Standard. Moreover, the utilization of waste glycerol from biodiesel process as carbon source for the cultivation of the microalgae S. mangrovei PQ6 and Spirulina platensis was also investigated.


Assuntos
Biocombustíveis , Microalgas/metabolismo , Estramenópilas/metabolismo , Biomassa , Carbono/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Glicerol/metabolismo , Processos Heterotróficos , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA