RESUMO
COVID-19 is the latest zoonotic RNA virus epidemic of concern. Learning how it began and spread will help to determine how to reduce the risk of future events. We review major RNA virus outbreaks since 1967 to identify common features and opportunities to prevent emergence, including ancestral viral origins in birds, bats, and other mammals; animal reservoirs and intermediate hosts; and pathways for zoonotic spillover and community spread, leading to local, regional, or international outbreaks. The increasing scientific evidence concerning the origins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is most consistent with a zoonotic origin and a spillover pathway from wildlife to people via wildlife farming and the wildlife trade. We apply what we know about these outbreaks to identify relevant, feasible, and implementable interventions. We identify three primary targets for pandemic prevention and preparedness: first, smart surveillance coupled with epidemiological risk assessment across wildlife-livestock-human (One Health) spillover interfaces; second, research to enhance pandemic preparedness and expedite development of vaccines and therapeutics; and third, strategies to reduce underlying drivers of spillover risk and spread and reduce the influence of misinformation. For all three, continued efforts to improve and integrate biosafety and biosecurity with the implementation of a One Health approach are essential. We discuss new models to address the challenges of creating an inclusive and effective governance structure, with the necessary stable funding for cross-disciplinary collaborative research. Finally, we offer recommendations for feasible actions to close the knowledge gaps across the One Health continuum and improve preparedness and response in the future.
Assuntos
COVID-19 , Quirópteros , Saúde Única , Animais , Animais Selvagens , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Zoonoses/epidemiologia , Zoonoses/prevenção & controleRESUMO
PURPOSE: This study aimed to discover intra-tumor heterogeneity signature and validate its predictive value for adjuvant chemotherapy (ACT) following concurrent chemoradiotherapy (CCRT) in locoregionally advanced nasopharyngeal carcinoma (LA-NPC). MATERIALS AND METHODS: 397 LA-NPC patients were retrospectively enrolled. Pre-treatment contrast-enhanced T1-weighted (CET1-w) MR images, clinical variables, and follow-up were retrospectively collected. We identified single predictive radiomic feature from primary gross tumor volume (GTVnp) and defined predicted subvolume by calculating voxel-wised feature mapping and within GTVnp. We independently validate predictive value of identified feature and associated predicted subvolume. RESULTS: Only one radiomic feature, gldm_DependenceVariance in 3 mm-sigma LoG-filtered image, was discovered as a signature. In the high-risk group determined by the signature, patients received CCRT + ACT achieved 3-year disease free survival (DFS) rate of 90% versus 57% (HR, 0.20; 95%CI, 0.05-0.94; P = 0.007) for CCRT alone. The multivariate analysis showed patients receiving CCRT + ACT had a HR of 0.21 (95%CI: 0.06-0.68, P = 0.009) for DFS compared to those receiving CCRT alone. The predictive value can also be generalized to the subvolume with multivariate HR of 0.27 (P = 0.017) for DFS. CONCLUSION: The signature with its heterogeneity mapping could be a reliable and explainable ACT decision-making tool in clinical practice.
Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico por imagem , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/tratamento farmacológico , Estudos Retrospectivos , Cisplatino/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimioterapia Adjuvante/métodos , Quimiorradioterapia/métodosRESUMO
Tumor tissue oxygenation significantly affects the outcome of radiotherapy. Real-time monitoring of tumor hypoxia is highly desirable for effective radiotherapy, and is the basis for improved treatment because hypoxic tumor cells are more resistant to radiation damage than fully oxygenated cells. We propose to use Cerenkov imaging to monitor tumor hypoxia by means of tissue blood oxygenation without the need for any exogenous contrast agent. Using a rodent hypoxia model, we demonstrate that Cerenkov imaging can be used as a noninvasive and noncontact method to measure tissue blood oxygenation level during radiation delivery. The data from Cerenkov imaging were validated using near infrared spectrometry methods. The results demonstrate the feasibility of using Cerenkov imaging to monitor tumor hypoxia during therapeutic radiation delivery.
Assuntos
Hipóxia/diagnóstico por imagem , Neoplasias/irrigação sanguínea , Oxigênio/análise , Radiometria/métodos , Meios de Contraste , Humanos , Neoplasias/química , Neoplasias/diagnóstico por imagemAssuntos
Betacoronavirus , Infecções por Coronavirus , Disseminação de Informação , Pneumonia Viral , Pesquisa Biomédica , COVID-19 , China , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Pessoal de Saúde , Humanos , Relações Interprofissionais , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Saúde Pública , SARS-CoV-2 , Ciência , Revelação da VerdadeRESUMO
OBJECTIVES: Liver transient elastography (TE) has been endorsed by the WHO as the first-line diagnostic tool for liver diseases. Although unreliable and invalid results caused by intercostal space (ICS)-associated factors (including excessive subcutaneous fat and a narrow ICS relative to the transducer size) and operator inexperience are not uncommon, no standard guidelines for ideal probe placement are currently available. Herein, we conducted a prospective observational study to identify an ideal measurement site and respiratory condition for TE by characterizing anatomical and biomechanical properties of the ICSs using ultrasound B-mode and elasticity imaging. METHODS: Intercostal ultrasound was performed pointwise at four specific sites in 59 patients to simultaneously measure the width, stiffness, and skinâliver capsule distance (SCD) of the ICSs over the liver, under end-inspiratory and end-expiratory conditions. Intersections between the 8th ICS and anterior axillary line, the 7th ICS and anterior axillary line, the 8th ICS and mid-axillary line, and the 7th ICS and mid-axillary line were defined as Sites 1 to 4, respectively. RESULTS: Results indicated that Sites 2 and 3 presented greater intercostal width; Sites 3 and 4 displayed lower intercostal stiffness; Sites 2 and 3 exhibited a shorter SCD. The ICSs were significantly wider and stiffer at end-inspiration. Additionally, the liver was more easily visualized at Sites 1 and 3. CONCLUSION: We recommend Site 3 for TE probe placement owing to its greater width, lower stiffness, and smaller abdominal wall thickness. Performing TE at end-inspiration is preferred to minimize transducer-rib interferences. This study paves the way toward a standardized TE examination procedure. CRITICAL RELEVANCE STATEMENT: A standardized measurement protocol for WHO-recommended liver TE was first established to improve the success and efficiency of the examination procedure. KEY POINTS: WHO-recommended TE is unreliable or fails due to intercostal space-related factors. The 8th intercostal space on the mid-axillary line and end-inspiration are recommended. This standardized protocol aids in handling challenging cases and simplifies operational procedures.
RESUMO
Transcranial sonography (TCS) has been introduced to assess hyper-echogenicity in the substantia nigra of the midbrain for Parkinson's disease (PD); however, its subjective and resource-demanding nature has impeded its widespread application. An AI-empowered TCS-based PD classification tool is greatly demanding, yet relevant research is severely scarce. Therefore, we proposed a novel dual-channel CNXV2-DANet for TCS-based PD classification using a large cohort. A total of 1176 TCS images from 588 subjects were retrospectively enrolled from Beijing Tiantan Hospital, encompassing both the left and right side of the midbrain for each subject. The entire dataset was divided into a training/validation/testing set at a ratio of 70%/15%/15%. Development of the proposed CNXV2-DANet was performed on the training set with comparisons between the single-channel and dual-channel input settings; model evaluation was conducted on the independent testing set. The proposed dual-channel CNXV2-DANet was compared against three state-of-the-art networks (ConvNeXtV2, ConvNeXt, Swin Transformer). The results demonstrated that both CNXV2-DANet and ConvNeXt V2 performed more superiorly under dual-channel inputs than the single-channel input. The dual-channel CNXV2-DANet outperformed the single-channel, achieving superior average metrics for accuracy (0.839 ± 0.028), precision (0.849 ± 0.014), recall (0.845 ± 0.043), F1-score (0.820 ± 0.038), and AUC (0.906 ± 0.013) compared with the single channel metrics for accuracy (0.784 ± 0.037), precision (0.817 ± 0.090), recall (0.748 ± 0.093), F1-score (0.773 ± 0.037), and AUC (0.861 ± 0.047). Furthermore, the dual-channel CNXV2-DANet outperformed all other networks (all p-values < 0.001). These findings suggest that the proposed dual-channel CNXV2-DANet may provide the community with an AI-empowered TCS-based tool for PD assessment.
RESUMO
This study aims to investigate the association of pre-treatment multi-phasic MR-based radiomics and dosimetric features with treatment response to a novel sequential trans-arterial chemoembolization (TACE) plus stereotactic body radiotherapy (SBRT) plus immunotherapy regimen in unresectable Hepatocellular Carcinoma (HCC) sub-population. Twenty-six patients with unresectable HCC were retrospectively analyzed. Radiomic features were extracted from 42 lesions on arterial phase (AP) and portal-venous phase (PVP) MR images. Delta-phase (DeltaP) radiomic features were calculated as AP-to-PVP ratio. Dosimetric data of the tumor was extracted from dose-volume-histograms. A two-sided independent Mann-Whitney U test was used to assess the clinical association of each feature, and the classification performance of each significant independent feature was assessed using logistic regression. For the 3-month timepoint, four DeltaP-derived radiomics that characterize the temporal change in intratumoral randomness and uniformity were the only contributors to the treatment response association (p-value = 0.038-0.063, AUC = 0.690-0.766). For the 6-month timepoint, DeltaP-derived radiomic features (n = 4) maintained strong clinical associations with the treatment response (p-value = 0.047-0.070, AUC = 0.699-0.788), additional AP-derived radiomic features (n = 4) that reflect baseline tumoral arterial-enhanced signal pattern and tumor morphology (n = 1) that denotes initial tumor burden were shown to have strong associations with treatment response (p-value = 0.028-0.074, AUC = 0.719-0.773). This pilot study successfully demonstrated associations of pre-treatment multi-phasic MR-based radiomics with tumor response to the novel treatment regimen.
RESUMO
Image perturbation is a promising technique to assess radiomic feature repeatability, but whether it can achieve the same effect as test-retest imaging on model reliability is unknown. This study aimed to compare radiomic model reliability based on repeatable features determined by the two methods using four different classifiers. A 191-patient public breast cancer dataset with 71 test-retest scans was used with pre-determined 117 training and 74 testing samples. We collected apparent diffusion coefficient images and manual tumor segmentations for radiomic feature extraction. Random translations, rotations, and contour randomizations were performed on the training images, and intra-class correlation coefficient (ICC) was used to filter high repeatable features. We evaluated model reliability in both internal generalizability and robustness, which were quantified by training and testing AUC and prediction ICC. Higher testing performance was found at higher feature ICC thresholds, but it dropped significantly at ICC = 0.95 for the test-retest model. Similar optimal reliability can be achieved with testing AUC = 0.7-0.8 and prediction ICC > 0.9 at the ICC threshold of 0.9. It is recommended to include feature repeatability analysis using image perturbation in any radiomic study when test-retest is not feasible, but care should be taken when deciding the optimal feature repeatability criteria.
Assuntos
Neoplasias da Mama , Processamento de Imagem Assistida por Computador , Humanos , Feminino , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética , Neoplasias da Mama/diagnóstico por imagemRESUMO
PURPOSE: The objective of this study was to develop a respiratory-correlated (RC) 4-dimensional (4D) imaging technique based on magnetic resonance fingerprinting (MRF) (RC-4DMRF) for liver tumor motion management in radiation therapy. METHODS AND MATERIALS: Thirteen patients with liver cancer were prospectively enrolled in this study. k-space MRF signals of the liver were acquired during free-breathing using the fast acquisition with steady-state precession sequence on a 3T scanner. The signals were binned into 8 respiratory phases based on respiratory surrogates, and interphase displacement vector fields were estimated using a phase-specific low-rank optimization method. Hereafter, the tissue property maps, including T1 and T2 relaxation times, and proton density, were reconstructed using a pyramid motion-compensated method that alternatively optimized interphase displacement vector fields and subspace images. To evaluate the efficacy of RC-4DMRF, amplitude motion differences and Pearson correlation coefficients were determined to assess measurement agreement in tumor motion between RC-4DMRF and cine magnetic resonance imaging (MRI); mean absolute percentage errors of the RC-4DMRF-derived tissue maps were calculated to reveal tissue quantification accuracy using digital human phantom; and tumor-to-liver contrast-to-noise ratio of RC-4DMRF images was compared with that of planning CT and contrast-enhanced MRI (CE-MRI) images. A paired Student t test was used for statistical significance analysis with a P value threshold of .05. RESULTS: RC-4DMRF achieved excellent agreement in motion measurement with cine MRI, yielding the mean (± standard deviation) Pearson correlation coefficients of 0.95 ± 0.05 and 0.93 ± 0.09 and amplitude motion differences of 1.48 ± 1.06 mm and 0.81 ± 0.64 mm in the superior-inferior and anterior-posterior directions, respectively. Moreover, RC-4DMRF achieved high accuracy in tissue property quantification, with mean absolute percentage errors of 8.8%, 9.6%, and 5.0% for T1, T2, and proton density, respectively. Notably, the tumor contrast-to-noise ratio in RC-4DMRI-derived T1 maps (6.41 ± 3.37) was found to be the highest among all tissue property maps, approximately equal to that of CE-MRI (6.96 ± 1.01, P = .862), and substantially higher than that of planning CT (2.91 ± 1.97, P = .048). CONCLUSIONS: RC-4DMRF demonstrated high accuracy in respiratory motion measurement and tissue properties quantification, potentially facilitating tumor motion management in liver radiation therapy.
Assuntos
Neoplasias Hepáticas , Prótons , Humanos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Respiração , Espectroscopia de Ressonância Magnética , Imagens de FantasmasRESUMO
BACKGROUND AND PURPOSE: To investigate the radiomic feature (RF) repeatability via perturbation and its impact on cross-institutional prognostic model generalizability in Nasopharyngeal Carcinoma (NPC) patients. MATERIALS AND METHODS: 286 and 183 NPC patients from two institutions were included for model training and validation. Perturbations with random translations and rotations were applied to contrast-enhanced T1-weighted (CET1-w) MR images. RFs were extracted from primary tumor volume under a wide range of image filtering and discretization settings. RF repeatability was assessed by intraclass correlation coefficient (ICC), which was used to equally separate the RFs into low- and high-repeatable groups by the median value. After feature selection, multivariate Cox regression and Kaplan-Meier analysis were independently employed to develop and analyze prognostic models. Concordance index (C-index) and P-value from log-rank test were used to assess model performance. RESULTS: Most textural RFs from high-pass wavelet-filtered images were susceptible to image perturbations. It was more prominent when a smaller discretization bin number was used (e.g., 8, mean ICC = 0.69). Using high-repeatable RFs for model development yielded a significantly higher C-index (0.63) in the validation cohort than when only low-repeatable RFs were used (0.57, P = 0.024), suggesting higher model generalizability. Besides, significant risk stratification in the validation cohort was observed only when high-repeatable RFs were used (P < 0.001). CONCLUSION: Repeatability of RFs from high-pass wavelet-filtered CET1-w MR images of primary NPC tumor was poor, particularly when a smaller bin number was used. Exclusive use of high-repeatable RFs is suggested to safeguard model generalizability for wide-spreading clinical utilization.
Assuntos
Imageamento por Ressonância Magnética , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico por imagem , Carcinoma Nasofaríngeo/patologia , Prognóstico , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética/métodos , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patologiaRESUMO
Given the high death rate caused by high-risk prostate cancer (PCa) (>40%) and the reliability issues associated with traditional prognostic markers, the purpose of this study is to investigate planning computed tomography (pCT)-based radiomics for the long-term prognostication of high-risk localized PCa patients who received whole pelvic radiotherapy (WPRT). This is a retrospective study with methods based on best practice procedures for radiomics research. Sixty-four patients were selected and randomly assigned to training (n = 45) and testing (n = 19) cohorts for radiomics model development with five major steps: pCT image acquisition using a Philips Big Bore CT simulator; multiple manual segmentations of clinical target volume for the prostate (CTVprostate) on the pCT images; feature extraction from the CTVprostate using PyRadiomics; feature selection for overfitting avoidance; and model development with three-fold cross-validation. The radiomics model and signature performances were evaluated based on the area under the receiver operating characteristic curve (AUC) as well as accuracy, sensitivity and specificity. This study's results show that our pCT-based radiomics model was able to predict the six-year progression-free survival of the high-risk localized PCa patients who received the WPRT with highly consistent performances (mean AUC: 0.76 (training) and 0.71 (testing)). These are comparable to findings of other similar studies including those using magnetic resonance imaging (MRI)-based radiomics. The accuracy, sensitivity and specificity of our radiomics signature that consisted of two texture features were 0.778, 0.833 and 0.556 (training) and 0.842, 0.867 and 0.750 (testing), respectively. Since CT is more readily available than MRI and is the standard-of-care modality for PCa WPRT planning, pCT-based radiomics could be used as a routine non-invasive approach to the prognostic prediction of WPRT treatment outcomes in high-risk localized PCa.
RESUMO
[This corrects the article DOI: 10.3389/fonc.2021.644703.].
RESUMO
Purpose: Deep learning model has shown the feasibility of providing spatial lung perfusion information based on CT images. However, the performance of this method on lung cancer patients is yet to be investigated. This study aims to develop a transfer learning framework to evaluate the deep learning based CT-to-perfusion mapping method specifically on lung cancer patients. Methods: SPECT/CT perfusion scans of 33 lung cancer patients and 137 non-cancer patients were retrospectively collected from two hospitals. To adapt the deep learning model on lung cancer patients, a transfer learning framework was developed to utilize the features learned from the non-cancer patients. These images were processed to extract features from three-dimensional CT images and synthesize the corresponding CT-based perfusion images. A pre-trained model was first developed using a dataset of patients with lung diseases other than lung cancer, and subsequently fine-tuned specifically on lung cancer patients under three-fold cross-validation. A multi-level evaluation was performed between the CT-based perfusion images and ground-truth SPECT perfusion images in aspects of voxel-wise correlation using Spearman's correlation coefficient (R), function-wise similarity using Dice Similarity Coefficient (DSC), and lobe-wise agreement using mean perfusion value for each lobe of the lungs. Results: The fine-tuned model yielded a high voxel-wise correlation (0.8142 ± 0.0669) and outperformed the pre-trained model by approximately 8%. Evaluation of function-wise similarity indicated an average DSC value of 0.8112 ± 0.0484 (range: 0.6460-0.8984) for high-functional lungs and 0.8137 ± 0.0414 (range: 0.6743-0.8902) for low-functional lungs. Among the 33 lung cancer patients, high DSC values of greater than 0.7 were achieved for high functional volumes in 32 patients and low functional volumes in all patients. The correlations of the mean perfusion value on the left upper lobe, left lower lobe, right upper lobe, right middle lobe, and right lower lobe were 0.7314, 0.7134, 0.5108, 0.4765, and 0.7618, respectively. Conclusion: For lung cancer patients, the CT-based perfusion images synthesized by the transfer learning framework indicated a strong voxel-wise correlation and function-wise similarity with the SPECT perfusion images. This suggests the great potential of the deep learning method in providing regional-based functional information for functional lung avoidance radiation therapy.
RESUMO
Purpose: This study investigates the impact of lung function on radiation pneumonitis prediction using a dual-omics analysis method. Methods: We retrospectively collected data of 126 stage III lung cancer patients treated with chemo-radiotherapy using intensity-modulated radiotherapy, including pre-treatment planning CT images, radiotherapy dose distribution, and contours of organs and structures. Lung perfusion functional images were generated using a previously developed deep learning method. The whole lung (WL) volume was divided into function-wise lung (FWL) regions based on the lung perfusion functional images. A total of 5,474 radiomics features and 213 dose features (including dosiomics features and dose-volume histogram factors) were extracted from the FWL and WL regions, respectively. The radiomics features (R), dose features (D), and combined dual-omics features (RD) were used for the analysis in each lung region of WL and FWL, labeled as WL-R, WL-D, WL-RD, FWL-R, FWL-D, and FWL-RD. The feature selection was carried out using ANOVA, followed by a statistical F-test and Pearson correlation test. Thirty times train-test splits were used to evaluate the predictability of each group. The overall average area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, and f1-score were calculated to assess the performance of each group. Results: The FWL-RD achieved a significantly higher average AUC than the WL-RD group in the training (FWL-RD: 0.927 ± 0.031, WL-RD: 0.849 ± 0.064) and testing cohorts (FWL-RD: 0.885 ± 0.028, WL-RD: 0.762 ± 0.053, p < 0.001). When using radiomics features only, the FWL-R group yielded a better classification result than the model trained with WL-R features in the training (FWL-R: 0.919 ± 0.036, WL-R: 0.820 ± 0.052) and testing cohorts (FWL-R: 0.862 ± 0.028, WL-R: 0.750 ± 0.057, p < 0.001). The FWL-D group obtained an average AUC of 0.782 ± 0.032, obtaining a better classification performance than the WL-D feature-based model of 0.740 ± 0.028 in the training cohort, while no significant difference was observed in the testing cohort (FWL-D: 0.725 ± 0.064, WL-D: 0.710 ± 0.068, p = 0.54). Conclusion: The dual-omics features from different lung functional regions can improve the prediction of radiation pneumonitis for lung cancer patients under IMRT treatment. This function-wise dual-omics analysis method holds great promise to improve the prediction of radiation pneumonitis for lung cancer patients.
RESUMO
Purpose: Tumor delineation plays a critical role in radiotherapy for hepatocellular carcinoma (HCC) patients. The incorporation of MRI might improve the ability to correctly identify tumor boundaries and delineation consistency. In this study, we evaluated a novel Multisource Adaptive MRI Fusion (MAMF) method in HCC patients for tumor delineation. Methods: Ten patients with HCC were included in this study retrospectively. Contrast-enhanced T1-weighted MRI at portal-venous phase (T1WPP), contrast-enhanced T1-weighted MRI at 19-min delayed phase (T1WDP), T2-weighted (T2W), and diffusion-weighted MRI (DWI) were acquired on a 3T MRI scanner and imported to in-house-developed MAMF software to generate synthetic MR fusion images. The original multi-contrast MR image sets were registered to planning CT by deformable image registration (DIR) using MIM. Four observers independently delineated gross tumor volumes (GTVs) on the planning CT, four original MR image sets, and the fused MRI for all patients. Tumor contrast-to-noise ratio (CNR) and Dice similarity coefficient (DSC) of the GTVs between each observer and a reference observer were measured on the six image sets. Inter-observer and inter-patient mean, SD, and coefficient of variation (CV) of the DSC were evaluated. Results: Fused MRI showed the highest tumor CNR compared to planning CT and original MR sets in the ten patients. The mean ± SD tumor CNR was 0.72 ± 0.73, 3.66 ± 2.96, 4.13 ± 3.98, 4.10 ± 3.17, 5.25 ± 2.44, and 9.82 ± 4.19 for CT, T1WPP, T2W, DWI, T1WDP, and fused MRI, respectively. Fused MRI has the minimum inter-observer and inter-patient variations as compared to original MR sets and planning CT sets. GTV delineation inter-observer mean DSC across the ten patients was 0.81 ± 0.09, 0.85 ± 0.08, 0.88 ± 0.04, 0.89 ± 0.08, 0.90 ± 0.04, and 0.95 ± 0.02 for planning CT, T1WPP, T2W, DWI, T1WDP, and fused MRI, respectively. The patient mean inter-observer CV of DSC was 3.3%, 3.2%, 1.7%, 2.6%, 1.5%, and 0.9% for planning CT, T1WPP, T2W, DWI, T1WDP, and fused MRI, respectively. Conclusion: The results demonstrated that the fused MRI generated using the MAMF method can enhance tumor CNR and improve inter-observer consistency of GTV delineation in HCC as compared to planning CT and four commonly used MR image sets (T1WPP, T1WDP, T2W, and DWI). The MAMF method holds great promise in MRI applications in HCC radiotherapy treatment planning.
RESUMO
Significant lymph node shrinkage is common in patients with nasopharyngeal carcinoma (NPC) throughout radiotherapy (RT) treatment, causing ill-fitted thermoplastic masks (IfTMs). To deal with this, an ad hoc adaptive radiotherapy (ART) may be required to ensure accurate and safe radiation delivery and to maintain treatment efficacy. Presently, the entire procedure for evaluating an eligible ART candidate is time-consuming, resource-demanding, and highly inefficient. In the artificial intelligence paradigm, the pre-treatment identification of NPC patients at risk for IfTMs has become greatly demanding for achieving efficient ART eligibility screening, while no relevant studies have been reported. Hence, we aimed to investigate the capability of computed tomography (CT)-based neck nodal radiomics for predicting IfTM-triggered ART events in NPC patients via a multi-center setting. Contrast-enhanced CT and the clinical data of 124 and 58 NPC patients from Queen Elizabeth Hospital (QEH) and Queen Mary Hospital (QMH), respectively, were retrospectively analyzed. Radiomic (R), clinical (C), and combined (RC) models were developed using the ridge algorithm in the QEH cohort and evaluated in the QMH cohort using the median area under the receiver operating characteristics curve (AUC). Delong's test was employed for model comparison. Model performance was further assessed on 1000 replicates in both cohorts separately via bootstrapping. The R model yielded the highest "corrected" AUC of 0.784 (BCa 95%CI: 0.673-0.859) and 0.723 (BCa 95%CI: 0.534-0.859) in the QEH and QMH cohort following bootstrapping, respectively. Delong's test indicated that the R model performed significantly better than the C model in the QMH cohort (p < 0.0001), while demonstrating no significant difference compared to the RC model (p = 0.5773). To conclude, CT-based neck nodal radiomics was capable of predicting IfTM-triggered ART events in NPC patients in this multi-center study, outperforming the traditional clinical model. The findings of this study provide valuable insights for future study into developing an effective screening strategy for ART eligibility in NPC patients in the long run, ultimately alleviating the workload of clinical practitioners, streamlining ART procedural efficiency in clinics, and achieving personalized RT for NPC patients in the future.
RESUMO
Functional lung avoidance radiation therapy aims to minimize dose delivery to the normal lung tissue while favoring dose deposition in the defective lung tissue based on the regional function information. However, the clinical acquisition of pulmonary functional images is resource-demanding, inconvenient, and technically challenging. This study aims to investigate the deep learning-based lung functional image synthesis from the CT domain. Forty-two pulmonary macro-aggregated albumin SPECT/CT perfusion scans were retrospectively collected from the hospital. A deep learning-based framework (including image preparation, image processing, and proposed convolutional neural network) was adopted to extract features from 3D CT images and synthesize perfusion as estimations of regional lung function. Ablation experiments were performed to assess the effects of each framework component by removing each element of the framework and analyzing the testing performances. Major results showed that the removal of the CT contrast enhancement component in the image processing resulted in the largest drop in framework performance, compared to the optimal performance (~12%). In the CNN part, all the three components (residual module, ROI attention, and skip attention) were approximately equally important to the framework performance; removing one of them resulted in a 3-5% decline in performance. The proposed CNN improved ~4% overall performance and ~350% computational efficiency, compared to the U-Net model. The deep convolutional neural network, in conjunction with image processing for feature enhancement, is capable of feature extraction from CT images for pulmonary perfusion synthesis. In the proposed framework, image processing, especially CT contrast enhancement, plays a crucial role in the perfusion synthesis. This CTPM framework provides insights for relevant research studies in the future and enables other researchers to leverage for the development of optimized CNN models for functional lung avoidance radiation therapy.
RESUMO
BACKGROUND: Bone suppression of chest X-ray holds the potential to improve the accuracy of target localization in image-guided radiation therapy (IGRT). However, the training dataset for bone suppression is limited because of the scarcity of bone-free radiographs. This study aims to develop a deep learning-based bone suppression method using CT-derived features to reduce the reliance on the bone-free dataset. METHODS: In this study, 59 high-resolution lung CT scans were processed to generate the lung digital radiographs (DRs), bone DRs, and bone-free DRs, for the training and internal validation of the proposed cascade convolutional neural network (CCNN). A three-stage image processing framework (CT segmentation, DR simulation, and feature expansion) was developed to expand simulated lung DRs with different weightings of bone intensity. The CCNN consists of a bone detection network and a bone suppression network. In external validation, the trained CCNN was evaluated using 30 chest radiographs. The synthesized bone-suppressed radiographs were compared with the bone-suppressed reference in terms of peak signal-to-noise ratio (PSNR), mean absolute error (MAE), structural similarity index measure (SSIM), and Spearman's correlation coefficient. Furthermore, the effectiveness of the proposed feature expansion method and CCNN model were assessed via the ablation experiment and replacement experiment, respectively. RESULTS: Evaluation on real chest radiographs showed that the bone-suppressed chest radiographs closely matched with the bone-suppressed reference, achieving an accuracy of MAE =0.0087±0.0030, SSIM =0.8458±0.0317, correlation of 0.9554±0.0170, and PNSR of 20.86±1.60. After removing the feature expansion from the CCNN model, the performance decreased in terms of MAE (0.0294±0.0093, -237.9%), SSIM (0.7747±0.0.0416, -8.4%), correlation (0.8772±0.0271, -8.2%), and PSNR (15.53±1.42, -25.5%) metrics. CONCLUSIONS: We successfully demonstrated a novel deep learning-based bone suppression method using CT-derived features to reduce the reliance on the bone-free dataset. Implementation of the feature expansion procedures resulted in a remarkable reinforcement of the model performance. For the application of target localization in IGRT, the clinical testing of the proposed method in the context of radiation therapy is a necessary procedure to move from theory into practice.