RESUMO
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a glutamine tract in ataxin-1 (ATXN1). SCA1 pathogenesis studies support a model in which the expanded glutamine tract causes toxicity by modulating the normal activities of ATXN1. To explore native interactions that modify the toxicity of ATXN1, we generated a targeted duplication of the mouse ataxin-1-like (Atxn1l, also known as Boat) locus, a highly conserved paralog of SCA1, and tested the role of this protein in SCA1 pathology. Using a knock-in mouse model of SCA1 that recapitulates the selective neurodegeneration seen in affected individuals, we found that elevated Atxn1l levels suppress neuropathology by displacing mutant Atxn1 from its native complex with Capicua (CIC). Our results provide genetic evidence that the selective neuropathology of SCA1 arises from modulation of a core functional activity of ATXN1, and they underscore the importance of studying the paralogs of genes mutated in neurodegenerative diseases to gain insight into mechanisms of pathogenesis.
Assuntos
Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Ataxias Espinocerebelares/genética , Animais , Ataxina-1 , Ataxinas , Células Cultivadas , Cerebelo/metabolismo , Expansão das Repetições de DNA , Células-Tronco Embrionárias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/análise , Células de Purkinje/metabolismo , Proteínas Repressoras/metabolismo , Ataxias Espinocerebelares/patologiaRESUMO
Progressive telomere attrition or deficiency of the protective shelterin complex elicits a DNA damage response as a result of a cell's inability to distinguish dysfunctional telomeric ends from DNA double-strand breaks. SNMIB/Apollo is a shelterin-associated protein and a member of the SMN1/PSO2 nuclease family that localizes to telomeres through its interaction with TRF2. Here, we generated SNMIB/Apollo knockout mouse embryo fibroblasts (MEFs) to probe the function of SNMIB/Apollo at mammalian telomeres. SNMIB/Apollo null MEFs exhibit an increased incidence of G2 chromatid-type fusions involving telomeres created by leading-strand DNA synthesis, reflective of a failure to protect these telomeres after DNA replication. Mutations within SNMIB/Apollo's conserved nuclease domain failed to suppress this phenotype, suggesting that its nuclease activity is required to protect leading-strand telomeres. SNMIB/Apollo(-/-)ATM(-/-) MEFs display robust telomere fusions when Trf2 is depleted, indicating that ATM is dispensable for repair of uncapped telomeres in this setting. Our data implicate the 5'-3' exonuclease function of SNM1B/Apollo in the generation of 3' single-stranded overhangs at newly replicated leading-strand telomeres to protect them from engaging the non-homologous end-joining pathway.
Assuntos
Reparo do DNA , Fibroblastos/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Aminopeptidases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Cromossomos/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Embrião de Mamíferos/citologia , Exodesoxirribonucleases , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Serina Proteases/metabolismo , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Tripeptidil-Peptidase 1 , Proteínas Supressoras de Tumor/metabolismoRESUMO
Conserved metallo ß-Lactamase and ß-CASP (CPSF-Artemis-Snm1-Pso2) domain nuclease family member SNM1B/Apollo is a shelterin-associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems. Cell proliferation defects were observed in Snm1B/Apollo mutant mouse embryonic fibroblasts (MEFs) owing to high levels of telomeric end-to-end fusions. Deficiency of the nonhomologous end-joining (NHEJ) factor Ku70, but not p53, rescued the developmental defects and lethality observed in Snm1B/Apollo mutant mice as well as the impaired proliferation of Snm1B/Apollo-deficient MEFs. These findings demonstrate that SNM1B/Apollo is required to protect telomeres against NHEJ-mediated repair, which results in genomic instability and the consequent multi-organ developmental failure. Although Snm1B/Apollo-deficient MEFs exhibited high levels of apoptosis, abrogation of p53-dependent programmed cell death did not rescue the multi-organ developmental failure in the mice.
Assuntos
Proliferação de Células , Desenvolvimento Embrionário , Proteínas de Ligação a Telômeros/fisiologia , Telômero/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Embrião de Mamíferos/metabolismo , Exodesoxirribonucleases , Feminino , Instabilidade Genômica , Camundongos , Camundongos Knockout , Gravidez , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
CHIP (C terminus of Hsc-70 interacting protein) is an E3 ligase that links the protein folding machinery with the ubiquitin-proteasome system and has been implicated in disorders characterized by protein misfolding and aggregation. Here we investigate the role of CHIP in protecting from ataxin-1-induced neurodegeneration. Ataxin-1 is a polyglutamine protein whose expansion causes spinocerebellar ataxia type-1 (SCA1) and triggers the formation of nuclear inclusions (NIs). We find that CHIP and ataxin-1 proteins directly interact and co-localize in NIs both in cell culture and SCA1 postmortem neurons. CHIP promotes ubiquitination of expanded ataxin-1 both in vitro and in cell culture. The Hsp70 chaperone increases CHIP-mediated ubiquitination of ataxin-1 in vitro, and the tetratricopeptide repeat domain, which mediates CHIP interactions with chaperones, is required for ataxin-1 ubitiquination in cell culture. Interestingly, CHIP also interacts with and ubiquitinates unexpanded ataxin-1. Overexpression of CHIP in a Drosophila model of SCA1 decreases the protein steady-state levels of both expanded and unexpanded ataxin-1 and suppresses their toxicity. Finally we investigate the ability of CHIP to protect against toxicity caused by expanded polyglutamine tracts in different protein contexts. We find that CHIP is not effective in suppressing the toxicity caused by a bare 127Q tract with only a short hemagglutinin tag, but it is very efficient in suppressing toxicity caused by a 128Q tract in the context of an N-terminal huntingtin backbone. These data underscore the importance of the protein framework for modulating the effects of polyglutamine-induced neurodegeneration.
Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/toxicidade , Proteínas Nucleares/metabolismo , Proteínas Nucleares/toxicidade , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Ataxina-1 , Ataxinas , Células Cultivadas , Drosophila melanogaster/anatomia & histologia , Humanos , Corpos de Inclusão Intranuclear/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Peptídeos/toxicidade , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/patologia , Conformação Proteica , Dobramento de Proteína , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Transgenes , Ubiquitina-Proteína Ligases/genéticaRESUMO
Spinocerebellar ataxia type 1 (SCA1) is one of several neurodegenerative diseases caused by expansion of a polyglutamine tract in the disease protein, in this case, ATAXIN-1 (ATXN1). A key question in the field is whether neurotoxicity is mediated by aberrant, novel interactions with the expanded protein or whether its wild-type functions are augmented to a deleterious degree. We examined soluble protein complexes from mouse cerebellum and found that the majority of wild-type and expanded ATXN1 assembles into large stable complexes containing the transcriptional repressor Capicua. ATXN1 directly binds Capicua and modulates Capicua repressor activity in Drosophila and mammalian cells, and its loss decreases the steady-state level of Capicua. Interestingly, the S776A mutation, which abrogates the neurotoxicity of expanded ATXN1, substantially reduces the association of mutant ATXN1 with Capicua in vivo. These data provide insight into the function of ATXN1 and suggest that SCA1 neuropathology depends on native, not novel, protein interactions.
Assuntos
Cerebelo/metabolismo , Drosophila/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Ataxias Espinocerebelares/etiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Ataxina-1 , Ataxinas , Encéfalo/metabolismo , Sequência Conservada , Drosophila/embriologia , Anormalidades do Olho/etiologia , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Peptídeos/metabolismo , Homologia de Sequência de Aminoácidos , Ataxias Espinocerebelares/genética , Transcrição Gênica , Asas de Animais/anormalidadesRESUMO
Spinocerebellar ataxia type 1 (SCA1) is one of several neurological disorders caused by a CAG repeat expansion. In SCA1, this expansion produces an abnormally long polyglutamine tract in the protein ataxin-1. Mutant polyglutamine proteins accumulate in neurons, inducing neurodegeneration, but the mechanism underlying this accumulation has been unclear. We have discovered that the 14-3-3 protein, a multifunctional regulatory molecule, mediates the neurotoxicity of ataxin-1 by binding to and stabilizing ataxin-1, thereby slowing its normal degradation. The association of ataxin-1 with 14-3-3 is regulated by Akt phosphorylation, and in a Drosophila model of SCA1, both 14-3-3 and Akt modulate neurodegeneration. Our finding that phosphatidylinositol 3-kinase/Akt signaling and 14-3-3 cooperate to modulate the neurotoxicity of ataxin-1 provides insight into SCA1 pathogenesis and identifies potential targets for therapeutic intervention.