RESUMO
We have studied the relaxation dynamics of a family of azaindole (AI) structural isomers, 4-, 5-, 6- and 7-AI, by steady-state and time-resolved methods (fs-transient absorption and fluorescence up-conversion), in solvents of different polarity. The measurements in aprotic solvents show distinctive fluorescence yields and excited state lifetimes among the isomers, which are tuned by the polarity of the medium. Guided by simple TD-DFT calculations and based on the behavior observed in the isolated species, it has been possible to address the influence of the environment polarity on the relaxation route. According to the obtained picture, the energy of the nπ* state, which is strongly dependent on the position of the pyridinic nitrogen, controls the rate of the internal conversion channel that accounts for the distinctive photophysical behavior of the isomers. On the other hand, preliminary measurements in protic media (methanol) show a very different photodynamical behavior, in which the anomalous measured fluorescent patterns are very likely the result of reactive channels (proton transfer) triggered by the electronic excitation.
RESUMO
Local activity of the small GTPase Cdc42 is critical for cell polarization. Whereas scaffold-mediated positive feedback was proposed to break symmetry of budding yeast cells and produce a single zone of Cdc42 activity, the existence of similar regulation has not been probed in other organisms. Here, we address this problem using rod-shaped cells of fission yeast Schizosaccharomyces pombe, which exhibit zones of active Cdc42-GTP at both cell poles. We implemented the CRY2-CIB1 optogenetic system for acute light-dependent protein recruitment to the plasma membrane, which allowed to directly demonstrate positive feedback. Indeed, optogenetic recruitment of constitutively active Cdc42 leads to co-recruitment of the guanine nucleotide exchange factor (GEF) Scd1 and endogenous Cdc42, in a manner dependent on the scaffold protein Scd2. We show that Scd2 function is dispensable when the positive feedback operates through an engineered interaction between the GEF and a Cdc42 effector, the p21-activated kinase 1 (Pak1). Remarkably, this rewired positive feedback confers viability and allows cells to form 2 zones of active Cdc42 even when otherwise essential Cdc42 activators are lacking. These cells further revealed that the small GTPase Ras1 plays a role in both localizing the GEF Scd1 and promoting its activity, which potentiates the positive feedback. We conclude that scaffold-mediated positive feedback, gated by Ras activity, confers robust polarization for rod-shape formation.
Assuntos
Matriz Nuclear/fisiologia , Schizosaccharomyces , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas ras/fisiologia , Polaridade Celular/genética , Retroalimentação Fisiológica/fisiologia , Optogenética , Organismos Geneticamente Modificados , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína cdc42 de Ligação ao GTP/genéticaRESUMO
We have conducted time-resolved experiments (pump-probe and pump-repump-probe) on a model aromatic chromophore, aniline, after excitation in water at 267 nm. In the initial spectra recorded, in addition to the absorption corresponding to the bright ππ* excitation, the fingerprint of a transient state with the electron located on the solvent molecule is identified. We postulate that the latter corresponds to the πσ* state along the N-H bond, whose complete relaxation with a â¼500 ps lifetime results in the formation of the fully solvated electron and cation. This ionization process occurs in parallel with the ππ* photophysical channel that yields the characteristic â¼1 ns fluorescence lifetime. The observed branched pathway is rationalized in terms of the different H-bonds that the water establishes with the amino group. The proposed mechanism could be common for aromatics in water containing N-H or O-H bonds and would allow the formation of separated charges after excitation at the threshold of their electronic absorptions.
RESUMO
One of the most fascinating questions in chemistry is why nature chose CGAT as the alphabet of life. Very likely, such selection was the result of multiple factors and a long period of refinement. Here, we explore how the intermolecular interactions influenced such process, by characterizing the formation of dimers between adenine, theobromine and 4-aminopyrimidine. Using a combination of mass-resolved excitation spectroscopy and DFT calculations, we determined the structure of adenine-theobromine and 4-aminopyrimidine-theobromine dimers. The binding energy of these dimers is very close to the canonical adenine-thymine nucleobases. Likewise, the dimers are able to adopt Watson-Crick conformations. These findings seem to indicate that there were many options available to build the first versions of the informational polymers, which also had to compete with other molecules, such as 4-aminopyrimidine, which does not have a valid attaching point for a saccharide. For some reason, nature did not select the most strongly-bonded partners or if it did, such proto-bases were later replaced by the nowadays canonical CGAT.
Assuntos
Timina , Ligação de Hidrogênio , Lasers , Análise EspectralRESUMO
Aiming to serve as a guide to understand the relaxation mechanisms of more complex aza-aromatic compounds, such as purine bases, we have studied the non-radiative channels of a set of azaindole structural isomers: 4-, 5-, 6- and 7-azaindole (AI). The relaxation of the isolated molecules, after excitation at the low energy portion of their spectra, has been tracked by femtosecond time-resolved ionization, and the decay paths have been obtained with MS-CASPT2//TD-DFT calculations. Although the ultrashort measured lifetimes for 5- and 6-AI are in contrast to the long-living excited state found in 7-AI, the calculations describe a common relaxation pathway. Along it, the initially excited ππ* states decay to the ground state through a conical intersection accessed through an nπ* state that functions as a gate state. The work reveals that the position of the nitrogen atoms in the purine ring determines the barrier to access the gate state and therefore, the rate of the non-radiative relaxation.
RESUMO
We have investigated the relaxation, following excitation in the 290-235 nm region, of neutral aniline homoclusters (An)n formed in a supersonic expansion by femtosecond time resolved ionization. The applied method permits isolation of the dynamics of the dimer from that originated in bigger species of the generated distribution. Interestingly, and differently from the monomer and (An)n≥3 clusters, the dimer does not present a N-H dissociative 1πσ* channel. This fact can be explained in terms of the symmetric structure adopted, in which each molecule establishes two N-Hπ interactions, destabilizing the H dissociation channel. The observations permit relating the photophysics to the interactions established by the aniline units and confirming previous observations and theoretical predictions on the structure of aniline aggregates.
RESUMO
The photoprotective capabilities of a family of compounds have been investigated. Their relaxation mechanisms have been explored by fluorescence and transient absorption measurements, and the minimum energy relaxation pathways were modeled by CASSCF/CASPT2 methods. This study demonstrates their excellent properties as sunscreens, and provides novel mechanistic insights for the rational design of new species.
RESUMO
The available experimental data provided by ultrafast dynamics studies of pyrrole and its derivatives in excited states of mixed Rydberg/valence 3s/πσ* character are strongly affected by the interaction with the laser pulses. Understanding these data has constituted an endeavor for several groups during the past few years. Here we apply a simple theoretical model that, including the interaction with the laser pulses, allows one to clarify some aspects of the discrepancies between measurements monitoring different experimental observables. New experimental data on pyrrole, 2,4-dimethylpyrrole, and 2,5-dimethylpyrrole are also provided to check the validity of the model and to gain more insight into the excited state dynamics of pyrrole systems.
RESUMO
The integrative and conjugative element ICEclc is a mobile genetic element in Pseudomonas knackmussii B13, and an experimental model for a widely distributed group of elements in Proteobacteria. ICEclc is transferred from specialized transfer competent cells, which arise at a frequency of 3-5% in a population at stationary phase. Very little is known about the different factors that control the transfer frequency of this ICE family. Here we report the discovery of a three-gene operon encoded by ICEclc, which exerts global control on transfer initiation. The operon consists of three consecutive regulatory genes, encoding a TetR-type repressor MfsR, a MarR-type regulator and a LysR-type activator TciR. We show that MfsR autoregulates expression of the operon, whereas TciR is a global activator of ICEclc gene expression, but no clear role was yet found for MarR. Deletion of mfsR increases expression of tciR and marR, causing the proportion of transfer competent cells to reach almost 100% and transfer frequencies to approach 1 per donor. mfsR deletion also caused a two orders of magnitude loss in population viability, individual cell growth arrest and loss of ICEclc. This indicates that autoregulation is an important feature maintaining ICE transfer but avoiding fitness loss. Bioinformatic analysis showed that the mfsR-marR-tciR operon is unique for ICEclc and a few highly related ICE, whereas tciR orthologues occur more widely in a large variety of suspected ICE among Proteobacteria.
Assuntos
Elementos de DNA Transponíveis/genética , Transferência Genética Horizontal , Pseudomonas/genética , Elementos Reguladores de Transcrição/genética , Proteínas de Bactérias/genética , Conjugação Genética , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Genoma Bacteriano , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Transativadores/genética , Transcrição Gênica/genéticaRESUMO
Cells self-organize using reaction-diffusion and fluid-flow principles. Whether bulk membrane flows contribute to cell patterning has not been established. Here, using mathematical modeling, optogenetics, and synthetic probes, we show that polarized exocytosis causes lateral membrane flows away from regions of membrane insertion. Plasma membraneassociated proteins with sufficiently low diffusion and/or detachment rates couple to the flows and deplete from areas of exocytosis. In rod-shaped fission yeast cells, zones of Cdc42 GTPase activity driving polarized exocytosis are limited by GTPase activating proteins (GAPs). We show that membrane flows pattern the GAP Rga4 distribution and that coupling of a synthetic GAP to membrane flows is sufficient to establish the rod shape. Thus, membrane flows induced by Cdc42-dependent exocytosis form a negative feedback restricting the zone of Cdc42 activity.
RESUMO
The small GTPase Cdc42 is critical for cell polarization in eukaryotic cells. In rod-shaped fission yeast Schizosaccharomyces pombe cells, active GTP-bound Cdc42 promotes polarized growth at cell poles, while inactive Cdc42-GDP localizes ubiquitously also along cell sides. Zones of Cdc42 activity are maintained by positive feedback amplification involving the formation of a complex between Cdc42-GTP, the scaffold Scd2, and the guanine nucleotide exchange factor (GEF) Scd1, which promotes the activation of more Cdc42. Here, we use the CRY2-CIB1 optogenetic system to recruit and cluster a cytosolic Cdc42 variant at the plasma membrane and show that this leads to its moderate activation also on cell sides. Surprisingly, Scd2, which binds Cdc42-GTP, is still recruited to CRY2-Cdc42 clusters at cell sides in individual deletion of the GEFs Scd1 or Gef1. We show that activated Cdc42 clusters at cell sides are able to recruit Scd1, dependent on the scaffold Scd2. However, Cdc42 activity is not amplified by positive feedback and does not lead to morphogenetic changes, due to antagonistic activity of the GTPase activating protein Rga4. Thus, the cell architecture is robust to moderate activation of Cdc42 at cell sides.
Assuntos
Membrana Celular/metabolismo , Criptocromos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular/genética , Forma Celular/genética , Criptocromos/genética , Retroalimentação Fisiológica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Organismos Geneticamente Modificados , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais/genética , Proteína cdc42 de Ligação ao GTP/genéticaRESUMO
The photodynamics of an orthogonal BODIPY dimer, particularly the formation of triplet states, has been explored by femtosecond and nanosecond transient absorption measurements. The short time scale data show the appearance of transient features of triplet character that, according to quantitative analysis of their intensities, account for more than 100% of the initially excited molecules, which reveals the occurrence of a singlet fission process in the isolated dimers. The formation rate of the triplet correlated state 1(TT) is found to depend on the solvent polarity, pointing to the mediation of a charge transfer character state. The dissociation of the 1(TT) state into pairs of individual triplets determines the triplet yield measured in the long time scales. The kinetic model derived from the results provides a comprehensive view of the photodynamics of BODIPY dimers and permits rationalization of the photophysical parameters of these systems.