Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Horm Metab Res ; 56(3): 223-234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168730

RESUMO

For treatment of type 1 diabetes mellitus, a combination of immune-based interventions and medication to promote beta-cell survival and proliferation has been proposed. Dextromethorphan (DXM) is an N-methyl-D-aspartate receptor antagonist with a good safety profile, and to date, preclinical and clinical evidence for blood glucose-lowering and islet-cell-protective effects of DXM have only been provided for animals and individuals with type 2 diabetes mellitus. Here, we assessed the potential anti-diabetic effects of DXM in the non-obese diabetic mouse model of type 1 diabetes. More specifically, we showed that DXM treatment led to five-fold higher numbers of pancreatic islets and more than two-fold larger alpha- and beta-cell areas compared to untreated mice. Further, DXM treatment improved glucose homeostasis and reduced diabetes incidence by 50%. Our data highlight DXM as a novel candidate for adjunct treatment of preclinical or recent-onset type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Camundongos , Animais , Camundongos Endogâmicos NOD , Dextrometorfano/farmacologia , Dextrometorfano/uso terapêutico , Receptores de N-Metil-D-Aspartato/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Insulina , Glicemia , Homeostase
2.
Nature ; 562(7725): 128-132, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30258227

RESUMO

Angiocrine signals derived from endothelial cells are an important component of intercellular communication and have a key role in organ growth, regeneration and disease1-4. These signals have been identified and studied in multiple organs, including the liver, pancreas, lung, heart, bone, bone marrow, central nervous system, retina and some cancers1-4. Here we use the developing liver as a model organ to study angiocrine signals5,6, and show that the growth rate of the liver correlates both spatially and temporally with blood perfusion to this organ. By manipulating blood flow through the liver vasculature, we demonstrate that vessel perfusion activates ß1 integrin and vascular endothelial growth factor receptor 3 (VEGFR3). Notably, both ß1 integrin and VEGFR3 are strictly required for normal production of hepatocyte growth factor, survival of hepatocytes and liver growth. Ex vivo perfusion of adult mouse liver and in vitro mechanical stretching of human hepatic endothelial cells illustrate that mechanotransduction alone is sufficient to turn on angiocrine signals. When the endothelial cells are mechanically stretched, angiocrine signals trigger in vitro proliferation and survival of primary human hepatocytes. Our findings uncover a signalling pathway in vascular endothelial cells that translates blood perfusion and mechanotransduction into organ growth and maintenance.


Assuntos
Comunicação Autócrina , Integrina beta1/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/fisiologia , Mecanotransdução Celular/fisiologia , Transdução de Sinais , Animais , Células Cultivadas , Células Endoteliais/fisiologia , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/citologia , Hepatócitos/fisiologia , Humanos , Fígado/irrigação sanguínea , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30518533

RESUMO

Vascular endothelial growth factor receptor-3 (VEGFR3) signalling promotes lymphangiogenesis. While there are many reported mechanisms of VEGFR3 activation, there is little understanding of how VEGFR3 signalling is attenuated to prevent lymphatic vascular overgrowth and ensure proper lymph vessel development. Here, we show that endothelial cell-specific depletion of integrin-linked kinase (ILK) in mouse embryos hyper-activates VEGFR3 signalling and leads to overgrowth of the jugular lymph sacs/primordial thoracic ducts, oedema and embryonic lethality. Lymphatic endothelial cell (LEC)-specific deletion of Ilk in adult mice initiates lymphatic vascular expansion in different organs, including cornea, skin and myocardium. Knockdown of ILK in human LECs triggers VEGFR3 tyrosine phosphorylation and proliferation. ILK is further found to impede interactions between VEGFR3 and ß1 integrin in vitro and in vivo, and endothelial cell-specific deletion of an Itgb1 allele rescues the excessive lymphatic vascular growth observed upon ILK depletion. Finally, mechanical stimulation disrupts the assembly of ILK and ß1 integrin, releasing the integrin to enable its interaction with VEGFR3. Our data suggest that ILK facilitates mechanically regulated VEGFR3 signalling via controlling its interaction with ß1 integrin and thus ensures proper development of lymphatic vessels.


Assuntos
Integrina beta1/metabolismo , Linfangiogênese , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Camundongos , Fosforilação , Transdução de Sinais
4.
Handb Exp Pharmacol ; 274: 439-465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34114119

RESUMO

Beta-cell dysfunction and beta-cell death are critical events in the development of type 2 diabetes mellitus (T2DM). Therefore, the goals of modern T2DM management have shifted from merely restoring normoglycemia to maintaining or regenerating beta-cell mass and function. In this review we summarize current and novel approaches to achieve these goals, ranging from lifestyle interventions to N-methyl-D-aspartate receptor (NMDAR) antagonism, and discuss the mechanisms underlying their effects on beta-cell physiology and glycemic control. Notably, timely intervention seems critical, but not always strictly required, to maximize the effect of any approach on beta-cell recovery and disease progression. Conventional antidiabetic medications are not disease-modifying in the sense that the disease does not progress or reoccur while on treatment or thereafter. More invasive approaches, such as bariatric surgery, are highly effective in restoring normoglycemia, but are reserved for a rather small proportion of obese individuals and sometimes associated with serious adverse events. Finally, we recapitulate the broad range of effects mediated by peripheral NMDARs and discuss recent evidence on the potential of NMDAR antagonists to be developed as a novel class of antidiabetic drugs. In the future, a more refined assessment of disease risk or disease subtype might enable more targeted therapies to prevent or treat diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Receptores de N-Metil-D-Aspartato
5.
Biol Chem ; 402(9): 1009-1019, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33908220

RESUMO

Recently, we have shown that an enhanced blood flow through the liver triggers hepatocyte proliferation and thereby liver growth. In this review, we first explain the literature on hepatic blood flow and its changes after partial hepatectomy (PHx), before we present the different steps of liver regeneration that take place right after the initial hemodynamic changes induced by PHx. Those parts of the molecular mechanisms governing liver regeneration, which are directly associated with the hepatic vascular system, are subsequently reviewed. These include ß1 integrin-dependent mechanotransduction in liver sinusoidal endothelial cells (LSECs), triggering mechanically-induced activation of the vascular endothelial growth factor receptor-3 (VEGFR3) and matrix metalloproteinase-9 (MMP9) as well as release of growth-promoting angiocrine signals. Finally, we speculate how advanced age and obesity negatively affect the hepatic vasculature and thus liver regeneration and health, and we conclude our review with some recent technical progress in the clinic that employs liver perfusion. In sum, the mechano-elastic properties and alterations of the hepatic vasculature are key to better understand and influence liver health, regeneration, and disease.


Assuntos
Regeneração Hepática , Animais , Células Endoteliais , Mecanotransdução Celular , Camundongos , Vasodilatação
6.
Diabetes Obes Metab ; 19 Suppl 1: 95-106, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28880473

RESUMO

Diabetes mellitus is characterized by chronically elevated blood glucose levels accelerated by a progressive decline of insulin-producing ß-cells in the pancreatic islets. Although medications are available to transiently adjust blood glucose to normal levels, the effects of current drugs are limited when it comes to preservation of a critical mass of functional ß-cells to sustainably maintain normoglycemia. In this review, we recapitulate recent evidence on the role of pancreatic N-methyl-D-aspartate receptors (NMDARs) in ß-cell physiology, and summarize effects of morphinan-based NMDAR antagonists that are beneficial for insulin secretion, glucose tolerance and islet cell survival. We further discuss NMDAR-mediated molecular pathways relevant for neuronal cell survival, which may also be important for the preservation of ß-cell function and mass. Finally, we summarize the literature for evidence on the role of NMDARs in the development of diabetic long-term complications, and highlight beneficial pharmacologic aspects of NMDAR antagonists in diabetic nephropathy, retinopathy as well as neuropathy.


Assuntos
Complicações do Diabetes/prevenção & controle , Diabetes Mellitus Tipo 2/tratamento farmacológico , Drogas em Investigação/uso terapêutico , Hiperglicemia/prevenção & controle , Hipoglicemiantes/uso terapêutico , Células Secretoras de Insulina/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/prevenção & controle , Neuropatias Diabéticas/prevenção & controle , Retinopatia Diabética/prevenção & controle , Desenho de Fármacos , Resistência a Múltiplos Medicamentos , Drogas em Investigação/efeitos adversos , Drogas em Investigação/química , Glucagon/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/metabolismo , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemia/prevenção & controle , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/química , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Neuralgia/complicações , Neuralgia/prevenção & controle , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Adv Exp Med Biol ; 1037: 173-186, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29147909

RESUMO

Type 2 diabetes mellitus (T2DM) is a worldwide escalating health disorder resulting from insulin resistance and functional loss of insulin-producing beta cells that finally cause chronically elevated blood glucose concentrations. Here we review the role of ubiquitously expressed antioxidant protein DJ-1 in the pathogenesis of T2DM. In beta cells, DJ-1 protects against oxidative stress, endoplasmic reticulum stress, and streptozotocin- and cytokine-induced stress and preserves beta cell viability and insulin secretion. In skeletal muscle, DJ-1 controls energy metabolism and efficient fuel utilization, whereas in adipose tissue a role in adipogenesis and obesity-induced inflammation has been reported. This suggests that DJ-1 plays multiple roles in many cell types under metabolically challenging conditions as seen in obesity, insulin resistance, and T2DM.


Assuntos
Antioxidantes/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Proteína Desglicase DJ-1/metabolismo , Tecido Adiposo/metabolismo , Animais , Metabolismo Energético , Humanos , Células Secretoras de Insulina/metabolismo , Músculo Esquelético/metabolismo
8.
Semin Cell Dev Biol ; 31: 115-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24631829

RESUMO

The blood and lymphatic vasculatures are essential for nutrient delivery, gas exchange and fluid homeostasis in all tissues of higher vertebrates. They are composed of a hierarchical network of vessels, which are lined by vascular or lymphatic endothelial cells. For blood vascular lumen formation to occur, endothelial cell cords polarize creating apposing apical cell surfaces, which repulse each other and give rise to a small intercellular lumen. Following cell shape changes, the vascular lumen expands. Various junctional proteins, polarity complexes, extracellular matrix binding and actin remodelling molecules are required for blood vascular lumen formation. In contrast, little is known regarding the molecular mechanisms leading to lymphatic vascular tube formation. Current models agree that lymphatic vessels share a blood vessel origin, but they differ in identifying the mechanism by which a lymphatic lumen is formed. A ballooning mechanism was proposed, in which lymph sacs are connected via their lumen to the cardinal veins. Alternatively, a mechanism involving budding of streams of lymphatic endothelial cells from either the cardinal veins or both the cardinal veins and the intersomitic vessels, and subsequent assembly and lumenisation was recently described. Here, we discuss what is currently known about the molecular and cellular machinery that guides blood and lymphatic vascular tube formation in mouse.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Linfangiogênese , Animais , Vasos Sanguíneos/embriologia , Células Endoteliais/citologia , Vasos Linfáticos/embriologia , Camundongos
9.
EMBO J ; 31(4): 788-804, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22157817

RESUMO

In the mammalian embryo, few mechanical signals have been identified to influence organ development and function. Here, we report that an increase in the volume of interstitial or extracellular fluid mechanically induces growth of an organ system, that is, the lymphatic vasculature. We first demonstrate that lymph vessel expansion in the developing mouse embryo correlates with a peak in interstitial fluid pressure and lymphatic endothelial cell (LEC) elongation. In 'loss-of-fluid' experiments, we then show that aspiration of interstitial fluid reduces the length of LECs, decreases tyrosine phosphorylation of vascular endothelial growth factor receptor-3 (VEGFR3), and inhibits LEC proliferation. Conversely, in 'gain-of-fluid' experiments, increasing the amount of interstitial fluid elongates the LECs, and increases both VEGFR3 phosphorylation and LEC proliferation. Finally, we provide genetic evidence that ß1 integrins are required for the proliferative response of LECs to both fluid accumulation and cell stretching and, therefore, are necessary for lymphatic vessel expansion and fluid drainage. Thus, we propose a new and physiologically relevant mode of VEGFR3 activation, which is based on mechanotransduction and is essential for normal development and fluid homeostasis in a mammalian embryo.


Assuntos
Vasos Linfáticos/citologia , Mecanotransdução Celular , Animais , Proliferação de Células , Humanos , Integrina beta1/genética , Integrina beta1/fisiologia , Camundongos , Fosforilação , Transdução de Sinais , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Adv Anat Embryol Cell Biol ; 214: 23-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24276884

RESUMO

The lymphatic vasculature is responsible for fluid homeostasis, transport of immune cells, inflammatory molecules, and dietary lipids. It is composed of a network of lymphatic capillaries that drain into collecting lymphatic vessels and ultimately bring fluid back to the blood circulation. Lymphatic endothelial cells (LECs) that line lymphatic capillaries present loose overlapping intercellular junctions and anchoring filaments that support fluid drainage. When interstitial fluid accumulates within tissues, the extracellular matrix (ECM) swells and pulls the anchoring filaments. This results in opening of the LEC junctions and permits interstitial fluid uptake. The absorbed fluid is then transported within collecting lymphatic vessels, which exhibit intraluminal valves that prevent lymph backflow and smooth muscle cells that sequentially contract to propel lymph.Mechanotransduction involves translation of mechanical stimuli into biological responses. LECs have been shown to sense and respond to changes in ECM stiffness, fluid pressure-induced cell stretch, and fluid flow-induced shear stress. How these signals influence LEC function and lymphatic vessel growth can be investigated by using different mechanotransduction assays in vitro and to some extent in vivo.In this chapter, we will focus on the mechanical forces that regulate lymphatic vessel expansion during embryonic development and possibly secondary lymphedema. In mouse embryos, it has been recently shown that the amount of interstitial fluid determines the extent of lymphatic vessel expansion via a mechanosensory complex formed by ß1 integrin and vascular endothelial growth factor receptor-3 (VEGFR3). This model might as well apply to secondary lymphedema.


Assuntos
Vasos Linfáticos/embriologia , Mecanotransdução Celular , Animais , Desenvolvimento Embrionário , Líquido Extracelular/fisiologia , Humanos , Linfangiogênese , Vasos Linfáticos/fisiologia , Linfedema/etiologia
11.
Cell Mol Life Sci ; 70(22): 4341-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23665871

RESUMO

The lymphatic vasculature is essential for fluid homeostasis and transport of immune cells, inflammatory molecules, and dietary lipids. It is composed of a hierarchical network of blind-ended lymphatic capillaries and collecting lymphatic vessels, both lined by lymphatic endothelial cells (LECs). The low hydrostatic pressure in lymphatic capillaries, their loose intercellular junctions, and attachment to the surrounding extracellular matrix (ECM) permit passage of extravasated blood plasma from the interstitium into the lumen of the lymphatic capillaries. It is generally thought that interstitial fluid accumulation leads to a swelling of the ECM, to which the LECs of lymphatic capillaries adhere, for example via anchoring filaments. As a result, LECs are pulled away from the vascular lumen, the junctions open, and fluid enters the lymphatic vasculature. The collecting lymphatic vessels then gather the plasma fluid from the capillaries and carry it through the lymph nodes to the blood circulation. The collecting vessels contain intraluminal bicuspid valves that prevent fluid backflow, and are embraced by smooth muscle cells that contribute to fluid transport. Although the lymphatic vessels are regular subject to mechanical strain, our knowledge of its influence on lymphatic development and pathologies is scarce. Here, we discuss the mechanical forces and molecular mechanisms regulating lymphatic vascular growth and maturation in the developing mouse embryo. We also consider how the lymphatic vasculature might be affected by similar mechanomechanisms in two pathological processes, namely cancer cell dissemination and secondary lymphedema.


Assuntos
Vasos Linfáticos/fisiologia , Animais , Matriz Extracelular/metabolismo , Humanos , Integrinas/metabolismo , Linfangiogênese , Vasos Linfáticos/patologia , Linfedema/metabolismo , Linfedema/patologia , Mecanotransdução Celular , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Br J Pharmacol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956895

RESUMO

BACKGROUND AND PURPOSE: Remote ischaemic preconditioning (rIPC) for cardioprotection is severely impaired in diabetes, and therapeutic options to restore it are lacking. The vascular endothelium plays a key role in rIPC. Given that the activity of endothelial nitric oxide synthase (eNOS) is inhibited by proline-rich tyrosine kinase 2 (Pyk2), we hypothesized that pharmacological Pyk2 inhibition could restore eNOS activity and thus restore remote cardioprotection in diabetes. EXPERIMENTAL APPROACH: New Zealand obese (NZO) mice that demonstrated key features of diabetes were studied. The consequence of Pyk2 inhibition on endothelial function, rIPC and infarct size after myocardial infarction were evaluated. The impact of plasma from mice and humans with or without diabetes was assessed in isolated buffer perfused murine hearts and aortic rings. KEY RESULTS: Plasma from nondiabetic mice and humans, both subjected to rIPC, caused remote tissue protection. Similar to diabetic humans, NZO mice demonstrated endothelial dysfunction. NZO mice had reduced circulating nitrite levels, elevated arterial blood pressure and a larger infarct size after ischaemia and reperfusion than BL6 mice. Pyk2 increased the phosphorylation of eNOS at its inhibitory site (Tyr656), limiting its activity in diabetes. The cardioprotective effects of rIPC were abolished in diabetic NZO mice. Pharmacological Pyk2 inhibition restored endothelial function and rescued cardioprotective effects of rIPC. CONCLUSION AND IMPLICATIONS: Endothelial function and remote tissue protection are impaired in diabetes. Pyk2 is a novel target for treating endothelial dysfunction and restoring cardioprotection through rIPC in diabetes.

13.
Nat Commun ; 15(1): 1076, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316785

RESUMO

Recently, we have shown that after partial hepatectomy (PHx), an increased hepatic blood flow initiates liver growth in mice by vasodilation and mechanically-triggered release of angiocrine signals. Here, we use mass spectrometry to identify a mechanically-induced angiocrine signal in human hepatic endothelial cells, that is, myeloid-derived growth factor (MYDGF). We show that it induces proliferation and promotes survival of primary human hepatocytes derived from different donors in two-dimensional cell culture, via activation of mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3). MYDGF also enhances proliferation of human hepatocytes in three-dimensional organoids. In vivo, genetic deletion of MYDGF decreases hepatocyte proliferation in the regenerating mouse liver after PHx; conversely, adeno-associated viral delivery of MYDGF increases hepatocyte proliferation and MAPK signaling after PHx. We conclude that MYDGF represents a mechanically-induced angiocrine signal and that it triggers growth of, and provides protection to, primary mouse and human hepatocytes.


Assuntos
Células Endoteliais , Interleucinas , Regeneração Hepática , Animais , Humanos , Camundongos , Proliferação de Células , Células Endoteliais/metabolismo , Hepatectomia , Hepatócitos/metabolismo , Fígado/metabolismo , Regeneração Hepática/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Interleucinas/metabolismo
14.
J Clin Invest ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888964

RESUMO

The ß-secretase BACE1 is a central drug target for Alzheimer's disease. Clinically tested, BACE1-directed inhibitors also block the homologous protease BACE2. Yet, little is known about physiological BACE2 substrates and functions in vivo. Here, we identify BACE2 as the protease shedding the lymphangiogenic vascular endothelial growth factor receptor 3 (VEGFR3). Inactivation of BACE2, but not BACE1, inhibited shedding of VEGFR3 from primary human lymphatic endothelial cells (LECs) and reduced release of the shed, soluble VEGFR3 (sVEGFR3) ectodomain into the blood of mice, non-human primates and humans. Functionally, BACE2 inactivation increased full-length VEGFR3 and enhanced VEGFR3 signaling in LECs and also in vivo in zebrafish, where enhanced migration of LECs was observed. Thus, this study identifies BACE2 as a modulator of lymphangiogenic VEGFR3 signaling and demonstrates the utility of sVEGFR3 as a pharmacodynamic plasma marker for BACE2 activity in vivo, a prerequisite for developing BACE1-selective inhibitors for a safer prevention of Alzheimer's disease.

15.
Circ Res ; 109(5): 486-91, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21778431

RESUMO

RATIONALE: Collagen- and calcium-binding EGF domains 1 (CCBE1) has been associated with Hennekam syndrome, in which patients have lymphedema, lymphangiectasias, and other cardiovascular anomalies. Insight into the molecular role of CCBE1 is completely lacking, and mouse models for the disease do not exist. OBJECTIVE: CCBE1 deficient mice were generated to understand the function of CCBE1 in cardiovascular development, and CCBE1 recombinant protein was used in both in vivo and in vitro settings to gain insight into the molecular function of CCBE1. METHODS AND RESULTS: Phenotypic analysis of murine Ccbe1 mutant embryos showed a complete lack of definitive lymphatic structures, even though Prox1(+) lymphatic endothelial cells get specified within the cardinal vein. Mutant mice die prenatally. Proximity ligation assays indicate that vascular endothelial growth factor receptor 3 activation appears unaltered in mutants. Human CCBE1 protein binds to components of the extracellular matrix in vitro, and CCBE1 protein strongly enhances vascular endothelial growth factor-C-mediated lymphangiogenesis in a corneal micropocket assay. CONCLUSIONS: Our data identify CCBE1 as a factor critically required for budding and migration of Prox-1(+) lymphatic endothelial cells from the cardinal vein. CCBE1 probably exerts these effects through binding to components of the extracellular matrix. CCBE1 has little lymphangiogenic effect on its own but dramatically enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Thus, our data suggest CCBE1 to be essential but not sufficient for lymphangiogenesis.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Endotélio Linfático/irrigação sanguínea , Endotélio Linfático/metabolismo , Linfangiogênese/fisiologia , Vasos Linfáticos/embriologia , Vasos Linfáticos/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Córnea/irrigação sanguínea , Córnea/citologia , Córnea/metabolismo , Endotélio Linfático/citologia , Humanos , Linfangiogênese/genética , Camundongos , Camundongos Knockout , Ligação Proteica/genética , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/fisiologia
16.
Curr Opin Hematol ; 19(3): 192-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22488306

RESUMO

PURPOSE OF REVIEW: The lumen of a blood vessel is essential for providing blood to any given tissue. Here, we discuss the molecular and cellular mechanisms underlying vascular lumen formation in invertebrates and vertebrates and highlight a new hypothesis describing oxygen transport in human malignant tumors. RECENT FINDINGS: Several cellular mechanisms exist for blood vessel formation, that is vasculogenesis, intercellular and intracellular sprouting angiogenesis, and intussusceptive angiogenesis, all of which might follow common molecular principles to form a vascular lumen. The latter includes junctional remodeling and generation of apical endothelial cell surfaces, electrostatic deadhesion of these cell surfaces to create a small lumen between two or more apposing endothelial cells or a cavity within an endothelial cell, and force-dependent expansion or extension of the vascular lumen. Whereas these events require endothelial cells, vascular lumen formation in invertebrates mostly occurs in their absence. As therapeutically targeting endothelial cells alone does not prevent vascular supply and growth of human malignant tumors, the possibility exists that some tumors employ invertebrate-like mechanisms of vascular lumen formation. SUMMARY: Whereas the molecular mechanisms of endothelial cell-based vascular lumen formation are beginning to be understood, it is still largely unknown how invertebrates and some malignant tumors establish a circulatory system in the absence of endothelium.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Neovascularização Fisiológica/fisiologia , Animais , Vasos Sanguíneos/fisiologia , Endotélio Vascular/fisiologia , Humanos , Invertebrados/fisiologia , Neoplasias/irrigação sanguínea , Neovascularização Patológica/fisiopatologia , Vertebrados/fisiologia
17.
Front Cardiovasc Med ; 10: 1171831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252113

RESUMO

Introduction: Platelet activation and thrombus formation is crucial for hemostasis, but also trigger arterial thrombosis. Calcium mobilization plays an important role in platelet activation, because many cellular processes depend on the level of intracellular Ca2+ ([Ca2+](i)), such as integrin activation, degranulation, cytoskeletal reorganization. Different modulators of Ca2+ signaling have been implied, such as STIM1, Orai1, CyPA, SGK1, etc. Also, the N-methyl-D-aspartate receptor (NMDAR) was identified to contribute to Ca2+ signaling in platelets. However, the role of the NMDAR in thrombus formation is not well defined. Methods: In vitro and in vivo analysis of platelet-specific NMDAR knock-out mice. Results: In this study, we analyzed Grin1fl/fl-Pf4-Cre+ mice with a platelet-specific knock-out of the essential GluN1 subunit of the NMDAR. We found reduced store-operated Ca2+ entry (SOCE), but unaltered store release in GluN1-deficient platelets. Defective SOCE resulted in reduced Src and PKC substrate phosphorylation following stimulation of glycoprotein (GP)VI or the thrombin receptor PAR4 followed by decreased integrin activation but unaltered degranulation. Consequently, thrombus formation on collagen under flow conditions was reduced ex vivo, and Grin1fl/fl-Pf4-Cre+ mice were protected against arterial thrombosis. Results from human platelets treated with the NMDAR antagonist MK-801 revealed a crucial role of the NMDAR in integrin activation and Ca2+ homeostasis in human platelets as well. Conclusion: NMDAR signaling is important for SOCE in platelets and contributes to platelet activation and arterial thrombosis. Thus, the NMDAR represents a novel target for anti-platelet therapy in cardiovascular disease (CVD).

18.
Mol Metab ; 67: 101650, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470401

RESUMO

OBJECTIVE: Beta cell dysfunction and death are critical steps in the development of both type 1 and type 2 diabetes (T1D and T2D), but the underlying mechanisms are incompletely understood. Activation of the essential tumor suppressor and transcription factor P53 (also known as TP53 and Trp53 in mice) was linked to beta cell death in vitro and has been reported in several diabetes mouse models and beta cells of humans with T2D. In this article, we set out to determine the beta cell specific role of P53 in beta cell dysfunction, cell death and development of diabetes in vivo. METHODS: We generated beta cell specific P53 knockout (P53BKO) mice and used complementary genetic, dietary and pharmacological models of glucose intolerance, beta cell dysfunction and diabetes development to evaluate the functional role of P53 selectively in beta cells. We further analyzed the effect of P53 ablation on beta cell survival in isolated pancreatic islets exposed to diabetogenic stress inducers ex vivo by flow cytometry. RESULTS: Beta cell specific ablation of P53/Trp53 failed to ameliorate glucose tolerance, insulin secretion or to increase beta cell numbers in genetic, dietary and pharmacological models of diabetes. Additionally, loss of P53 in beta cells did not protect against streptozotocin (STZ) induced hyperglycemia and beta cell death, although STZ-induced activation of classical pro-apoptotic P53 target genes was significantly reduced in P53BKO mice. In contrast, Olaparib mediated PARP1 inhibition protected against acute ex vivo STZ-induced beta cell death and islet destruction. CONCLUSIONS: Our study reveals that ablation of P53 specifically in beta cells is unexpectedly unable to attenuate beta cell failure and death in vivo and ex vivo. While during development and progression of diabetes, P53 and P53-regulated pathways are activated, our study suggests that P53 signaling is not essential for loss of beta cells or beta cell dysfunction. P53 in other cell types and organs may predominantly regulate systemic glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Células Secretoras de Insulina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Glucose/metabolismo
19.
Mol Metab ; 75: 101775, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451343

RESUMO

OBJECTIVE: Dextromethorphan (DXM) is a commonly used antitussive medication with positive effects in people with type 2 diabetes mellitus, since it increases glucose tolerance and protects pancreatic islets from cell death. However, its use as an antidiabetic medication is limited due to its central nervous side effects and potential use as a recreational drug. Therefore, we recently modified DXM chemically to reduce its blood-brain barrier (BBB) penetration and central side effects. However, our best compound interacted with the cardiac potassium channel hERG (human ether-à-go-go-related gene product) and the µ-opioid receptor (MOR). Thus, the goal of this study was to reduce the interaction of our compound with these targets, while maintaining its beneficial properties. METHODS: Receptor and channel binding assays were conducted to evaluate the drug safety of our DXM derivative. Pancreatic islets were used to investigate the effect of the compound on insulin secretion and islet cell survival. Via liquor collection from the brain and a behavioral assay, we analyzed the BBB permeability. By performing intraperitoneal and oral glucose tolerance tests as well as pharmacokinetic analyses, the antidiabetic potential and elimination half-life were investigated, respectively. To analyze the islet cell-protective effect, we used fluorescence microscopy as well as flow cytometric analyses. RESULTS: Here, we report the design and synthesis of an optimized, orally available BBB-impermeable DXM derivative with lesser binding to hERG and MOR than previous ones. We also show that the new compound substantially enhances glucose-stimulated insulin secretion (GSIS) from mouse and human islets and glucose tolerance in mice as well as protects pancreatic islets from cell death induced by reactive oxygen species and that it amplifies the effects of tirzepatide on GSIS and islet cell viability. CONCLUSIONS: We succeeded to design and synthesize a novel morphinan derivative that is BBB-impermeable, glucose-lowering and islet cell-protective and has good drug safety despite its morphinan and imidazole structures.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Morfinanos , Camundongos , Humanos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Morfinanos/metabolismo , Morfinanos/farmacologia , Ilhotas Pancreáticas/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Estresse Oxidativo
20.
Cell Rep ; 42(6): 112615, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294632

RESUMO

Type 2 diabetes is characterized by insulin hypersecretion followed by reduced glucose-stimulated insulin secretion (GSIS). Here we show that acute stimulation of pancreatic islets with the insulin secretagogue dextrorphan (DXO) or glibenclamide enhances GSIS, whereas chronic treatment with high concentrations of these drugs reduce GSIS but protect islets from cell death. Bulk RNA sequencing of islets shows increased expression of genes for serine-linked mitochondrial one-carbon metabolism (OCM) after chronic, but not acute, stimulation. In chronically stimulated islets, more glucose is metabolized to serine than to citrate, and the mitochondrial ATP/ADP ratio decreases, whereas the NADPH/NADP+ ratio increases. Activating transcription factor-4 (Atf4) is required and sufficient to activate serine-linked mitochondrial OCM genes in islets, with gain- and loss-of-function experiments showing that Atf4 reduces GSIS and is required, but not sufficient, for full DXO-mediated islet protection. In sum, we identify a reversible metabolic pathway that provides islet protection at the expense of secretory function.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Carbono/metabolismo , Células Secretoras de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA