Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(4): e0153923, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470195

RESUMO

Murepavadin is a peptidomimetic that specifically targets the lipopolysaccharide transport protein LptD of Pseudomonas aeruginosa. Here, we found that murepavadin enhances the bactericidal efficacies of tobramycin and amikacin. We further demonstrated that murepavadin enhances bacterial respiration activity and subsequent membrane potential, which promotes intracellular uptake of aminoglycoside antibiotics. In addition, the murepavadin-amikacin combination displayed a synergistic bactericidal effect in a murine pneumonia model.


Assuntos
Amicacina , Peptídeos Cíclicos , Infecções por Pseudomonas , Animais , Camundongos , Amicacina/farmacologia , Pseudomonas aeruginosa , Potenciais da Membrana , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Tobramicina/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana
2.
Antimicrob Agents Chemother ; 65(7): e0269620, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33875431

RESUMO

Ciprofloxacin is one of the most widely used antibiotics for treating Pseudomonas aeruginosa infections. However, P. aeruginosa acquires mutations that confer ciprofloxacin resistance, making treatment more difficult. Resistance is multifactorial, with mutations in multiple genes influencing the resistance phenotype. However, the contributions of individual mutations and mutation combinations to the amounts of ciprofloxacin that P. aeruginosa can tolerate are not well understood. Engineering P. aeruginosa strain PAO1 to contain mutations in any one of the resistance-associated genes gyrA, nfxB, rnfC, parC, and parE showed that only gyrA mutations increased the MIC for ciprofloxacin. Mutations in parC and parE increased the MIC of a gyrA mutant, making the bacteria ciprofloxacin resistant. Mutations in nfxB and rnfC increased the MIC, conferring resistance, only if both were mutated in a gyrA background. Mutations in all of gyrA, nfxB, rnfC, and parC/E further increased the MIC. These findings reveal an epistatic network of gene-gene interactions in ciprofloxacin resistance. We used this information to predict ciprofloxacin resistance/susceptibility for 274 isolates of P. aeruginosa from their genome sequences. Antibiotic susceptibility profiles were predicted correctly for 84% of the isolates. The majority of isolates for which prediction was unsuccessful were ciprofloxacin resistant, demonstrating the involvement of additional as yet unidentified genes and mutations in resistance. Our data show that gene-gene interactions can play an important role in antibiotic resistance and can be successfully incorporated into models predicting resistance phenotype.


Assuntos
Ciprofloxacina , Pseudomonas aeruginosa , Ciprofloxacina/farmacologia , DNA Girase/genética , DNA Topoisomerase IV/genética , Farmacorresistência Bacteriana/genética , Fluoroquinolonas , Testes de Sensibilidade Microbiana , Mutação/genética , Fenótipo , Pseudomonas aeruginosa/genética
3.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672312

RESUMO

The problematic opportunistic pathogen Pseudomonas aeruginosa secretes a siderophore, pyoverdine. Pyoverdine scavenges iron needed by the bacteria for growth and for pathogenicity in a range of different infection models. PvdF, a hydroxyornithine transformylase enzyme, is essential for pyoverdine synthesis, catalysing synthesis of formylhydroxyornithine (fOHOrn) that forms part of the pyoverdine molecule and provides iron-chelating hydroxamate ligands. Using a mass spectrometry assay, we confirm that purified PvdF catalyses synthesis of fOHOrn from hydroxyornithine and formyltetrahydrofolate substrates. Site directed mutagenesis was carried out to investigate amino acid residues predicted to be required for enzymatic activity. Enzyme variants were assayed for activity in vitro and also in vivo, through measuring their ability to restore pyoverdine production to a pvdF mutant strain. Variants at two putative catalytic residues N168 and H170 greatly reduced enzymatic activity in vivo though did not abolish activity in vitro. Change of a third residue D229 abolished activity both in vivo and in vitro. A change predicted to block entry of N10-formyltetrahydrofolate (fTHF) to the active site also abolished activity both in vitro and in vivo. A co-purification assay showed that PvdF binds to an enzyme PvdA that catalyses synthesis of hydroxyornithine, with this interaction likely to increase the efficiency of fOHOrn synthesis. Our findings advance understanding of how P. aeruginosa synthesises pyoverdine, a key factor in host-pathogen interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Hidroximetil e Formil Transferases/metabolismo , Oxigenases de Função Mista/metabolismo , Sideróforos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Hidroximetil e Formil Transferases/genética , Hidroximetil e Formil Transferases/isolamento & purificação , Oxigenases de Função Mista/genética , Mutagênese Sítio-Dirigida , Oligopeptídeos/biossíntese , Mapas de Interação de Proteínas , Estabilidade Proteica , Pseudomonas aeruginosa/metabolismo
4.
Mol Plant Microbe Interact ; 32(10): 1324-1335, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31107632

RESUMO

In ascomycetes and basidiomycetes, iron-responsive GATA-type transcriptional repressors are involved in regulating iron homeostasis, notably to prevent iron toxicity through control of iron uptake. To date, it has been unknown whether this iron regulator contributes toward mutualistic endosymbiosis of microbes with plants, a system where the endophyte must function within the constraints of an in-host existence, including a dependency on the host for nutrient acquisition. Functional characterization of one such protein, SreA from Epichloë festucae, a fungal endosymbiont of cool-season grasses, indicates that regulation of iron homeostasis processes is important for symbiotic maintenance. The deletion of the sreA gene (ΔsreA) led to iron-dependent aberrant hyphal growth and the gradual loss of endophyte hyphae from perennial ryegrass. SreA negatively regulates the siderophore biosynthesis and high-affinity iron uptake systems of E. festucae, similar to other fungi, resulting in iron accumulation in mutants. Our evidence suggests that SreA is involved in the processes that moderate Epichloë iron acquisition from the plant apoplast, because overharvesting of iron in ΔsreA mutants was detected as premature chlorosis of the host using a hydroponic plant growth assay. E. festucae appears to have a tightly regulated iron management system, involving SreA that balances endophyte growth with its survival and prevents overcompetition with the host for iron in the intercellular niche, thus promoting mutualistic associations. Mutations that interfere with Epichloë iron management negatively affect iron-dependent fungal growth and destabilize mutualistic Epichloë -ryegrass associations.


Assuntos
Epichloe , Fatores de Transcrição GATA , Lolium , Simbiose , Epichloe/genética , Proteínas Fúngicas/genética , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Ferro/metabolismo , Lolium/microbiologia , Mutação , Simbiose/genética
5.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31570397

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections. An increasing number of isolates have mutations that make them antibiotic resistant, making treatment difficult. To identify resistance-associated mutations we experimentally evolved the antibiotic sensitive strain P. aeruginosa PAO1 to become resistant to three widely used anti-pseudomonal antibiotics, ciprofloxacin, meropenem and tobramycin. Mutants could tolerate up to 2048-fold higher concentrations of antibiotic than strain PAO1. Genome sequences were determined for thirteen mutants for each antibiotic. Each mutant had between 2 and 8 mutations. For each antibiotic at least 8 genes were mutated in multiple mutants, demonstrating the genetic complexity of resistance. For all three antibiotics mutations arose in genes known to be associated with resistance, but also in genes not previously associated with resistance. To determine the clinical relevance of mutations uncovered in this study we analysed the corresponding genes in 558 isolates of P. aeruginosa from patients with chronic lung disease and in 172 isolates from the general environment. Many genes identified through experimental evolution had predicted function-altering changes in clinical isolates but not in environmental isolates, showing that mutated genes in experimentally evolved bacteria can predict those that undergo mutation during infection. Additionally, large deletions of up to 479kb arose in experimentally evolved meropenem resistant mutants and large deletions were present in 87 of the clinical isolates. These findings significantly advance understanding of antibiotic resistance in P. aeruginosa and demonstrate the validity of experimental evolution in identifying clinically-relevant resistance-associated mutations.

6.
Protein Expr Purif ; 160: 11-18, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30878602

RESUMO

Bacteria contain sigma (σ) factors that control gene expression in response to various environmental stimuli. The alternative sigma factors σFpvI and σPvdS bind specifically to the antisigma factor FpvR. These proteins are an essential component of the pyoverdine-based system for iron uptake in Pseudomonas aeruginosa. Due to the uniqueness of this system, where the activities of both the σFpvI and σPvdS sigma factors are regulated by the same antisigma factor, the interactions between the antisigma protein FpvR20 and the σFpvI and σPvdS proteins have been widely studied in vivo. However, difficulties in obtaining soluble, recombinant preparations of the σFpvI and σPvdS proteins have limited their biochemical and structural characterizations. In this study, we describe a purification protocol that resulted in the production of soluble, recombinant His6-σFpvI/FpvR1-67, His6-σFpvI/FpvR1-89, His6-σPvdS/FpvR1-67 and His6-σPvdS/FpvR1-89 protein complexes (where FpvR1-67 and FpvR1-89 are truncated versions of FpvR20) at high purities and concentrations, appropriate for biophysical analyses by circular dichroism spectroscopy and analytical ultracentrifugation. These results showed the proteins to be folded in solution and led to the determination of the affinities of the protein-protein interactions within the His6-σFpvI/FpvR1-67 and His6-σPvdS/FpvR1-67 complexes. A comparison of these values with those previously reported for the His6-σFpvI/FpvR1-89 and His6-σPvdS/FpvR1-89 complexes is made.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Pseudomonas aeruginosa/metabolismo , Fator sigma/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligação Proteica , Dobramento de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Fator sigma/química , Fator sigma/genética , Fator sigma/metabolismo , Temperatura
7.
BMC Genomics ; 19(1): 644, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165811

RESUMO

BACKGROUND: Chronic lung infections caused by Pseudomonas aeruginosa are a significant cause of morbidity and mortality in people with cystic fibrosis (CF). Shared P. aeruginosa strains, that can be transmitted between patients, are of concern and in Australia the AUST-02 shared strain is predominant in individuals attending CF centres in Queensland and Western Australia. M3L7 is a multidrug resistant sub-type of AUST-02 that was recently identified in a Queensland CF centre and was shown to be associated with poorer clinical outcomes. The main aim of this study was to resolve the relationship of the emergent M3L7 sub-type within the AUST-02 group of strains using whole genome sequencing. RESULTS: A whole genome core phylogeny of 63 isolates indicated that M3L7 is a monophyletic sub-lineage within the context of the broader AUST-02 group. Relatively short branch lengths connected all of the M3L7 isolates. A phylogeny based on nucleotide polymorphisms present across the genome showed that the chronological estimation of the most recent common ancestor was around 2001 (± 3 years). SNP differences between sequential non-hypermutator M3L7 isolates collected 3-4 years apart from five patients suggested both continuous infection of the same strain and cross-infection of some M3L7 variants between patients. The majority of polymorphisms that were characteristic of M3L7 (i.e. acquired after divergence from all other AUST-02 isolates sequenced) were found to produce non-synonymous mutations in virulence and antibiotic resistance genes. CONCLUSIONS: M3L7 has recently diverged from a common ancestor, indicating descent from a single carrier at a CF treatment centre in Australia. Both adaptation to the lung and transmission of M3L7 between adults attending this centre may have contributed to its rapid dissemination. Further genomic investigations are required on multiple intra-sample isolates of this sub-type to decipher potential mechanisms which facilitates its epidemiological success.


Assuntos
Fibrose Cística/complicações , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/transmissão , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/isolamento & purificação , Adulto , Fibrose Cística/microbiologia , Variação Genética , Genótipo , Humanos , Filogenia , Pseudomonas aeruginosa/genética , Sequenciamento Completo do Genoma
8.
Mol Microbiol ; 106(6): 891-904, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28971540

RESUMO

Alternative sigma (σ) factors govern expression of bacterial genes in response to diverse environmental signals. In Pseudomonas aeruginosa σPvdS directs expression of genes for production of a siderophore, pyoverdine, as well as a toxin and a protease. σFpvI directs expression of a receptor for ferripyoverdine import. Expression of the genes encoding σPvdS and σFpvI is iron-regulated and an antisigma protein, FpvR20 , post-translationally controls the activities of the sigma factors in response to the amount of ferripyoverdine present. Here we show that iron represses synthesis of σPvdS to a far greater extent than σFpvI . In contrast ferripyoverdine exerts similar effects on the activities of both sigma factors. Using a combination of in vivo and in vitro assays we show that σFpvI and σPvdS have comparable affinities for, and are equally inhibited by, FpvR20 . Importantly, in the absence of ferripyoverdine the amount of FpvR20 per cell is lower than the amount of σFpvI and σPvdS , allowing basal expression of target genes that is required to activate the signalling pathway when ferripyoverdine is present. This complex interplay of transcriptional and post-translational regulation enables a co-ordinated response to ferripyoverdine but distinct responses to iron.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Repressoras/metabolismo , Fator sigma/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Quelantes de Ferro , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Ligação Proteica , Pseudomonas aeruginosa/genética , Elementos Reguladores de Transcrição , Proteínas Repressoras/genética , Sideróforos/genética , Sideróforos/metabolismo , Fator sigma/antagonistas & inibidores , Fator sigma/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-30201819

RESUMO

The lungs of individuals with cystic fibrosis (CF) become chronically infected with Pseudomonas aeruginosa that is difficult to eradicate by antibiotic treatment. Two key P. aeruginosa antibiotic resistance mechanisms are the AmpC ß-lactamase that degrades ß-lactam antibiotics and MexXYOprM, a three-protein efflux pump that expels aminoglycoside antibiotics from the bacterial cells. Levels of antibiotic resistance gene expression are likely to be a key factor in antibiotic resistance but have not been determined during infection. The aims of this research were to investigate the expression of the ampC and mexX genes during infection in patients with CF and in bacteria isolated from the same patients and grown under laboratory conditions. P. aeruginosa isolates from 36 CF patients were grown in laboratory culture and gene expression measured by reverse transcription-quantitative PCR (RT-qPCR). The expression of ampC varied over 20,000-fold and that of mexX over 2,000-fold between isolates. The median expression levels of both genes were increased by the presence of subinhibitory concentrations of antibiotics. To measure P. aeruginosa gene expression during infection, we carried out RT-qPCR using RNA extracted from fresh sputum samples obtained from 31 patients. The expression of ampC varied over 4,000-fold, while mexX expression varied over 100-fold, between patients. Despite these wide variations, median levels of expression of ampC in bacteria in sputum were similar to those in laboratory-grown bacteria. The expression of mexX was higher in sputum than in laboratory-grown bacteria. Overall, our data demonstrate that genes that contribute to antibiotic resistance can be highly expressed in patients, but there is extensive isolate-to-isolate and patient-to-patient variation.


Assuntos
Fibrose Cística/microbiologia , Resistência Microbiana a Medicamentos/genética , Pseudomonas aeruginosa/genética , Adolescente , Adulto , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Criança , Fibrose Cística/tratamento farmacológico , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana/métodos , Pessoa de Meia-Idade , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Escarro/microbiologia , Adulto Jovem , beta-Lactamases/genética
10.
Fungal Genet Biol ; 111: 60-72, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29155067

RESUMO

The symbiosis between Epichloë festucae and its host perennial ryegrass (Lolium perenne) is a model system for mutualistic interactions in which the fungal endophyte grows between plant shoot cells and acquires host nutrients to survive. E. festucae synthesises the siderophore epichloënin A (EA) via SidN, a non-ribosomal peptide synthetase (NRPS). EA is involved in the acquisition of iron, an essential micronutrient, as part of the process of maintaining a stable symbiotic interaction. Here, we mutated a different NRPS gene sidC and showed that it is required for production of a second siderophore ferricrocin (FC). Furthermore mutations in sidA, encoding an l-ornithine N5-monooxygenase, abolished both EA and FC production. Axenic growth phenotypes of the siderophore mutants were altered relative to wild-type (WT) providing insights into the roles of E. festucae siderophores in iron trafficking and consequently in growth and morphogenesis. During iron-limitation, EA is the predominant siderophore and in addition to its role in iron acquisition it appears to play roles in intracellular iron sequestration and oxidative stress tolerance. FC in contrast is exclusively located intracellularly and is the dominant siderophore under conditions of iron sufficiency when it is likely to have roles in iron storage and iron transport. Intriguingly, EA acts to promote but may also moderate E. festucae growth (depending on the amount of available iron). We therefore hypothesise that coordinated cellular iron sequestration through FC and EA may be one of the mechanisms that E. festucae employs to manage and restrain its growth in response to iron fluxes and ultimately persist as a controlled symbiont.


Assuntos
Epichloe/fisiologia , Ferro/metabolismo , Peptídeo Sintases/fisiologia , Sideróforos/fisiologia , Epichloe/enzimologia , Epichloe/genética , Genes Fúngicos , Homeostase , Lolium/microbiologia , Mutagênese , Estresse Oxidativo , Peptídeo Sintases/biossíntese , Peptídeo Sintases/genética , Sideróforos/biossíntese , Sideróforos/genética
11.
Eur Respir J ; 49(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28446558

RESUMO

To characterise Pseudomonas aeruginosa populations during chronic lung infections of non-cystic fibrosis bronchiectasis patients, we used whole-genome sequencing to 1) assess the diversity of P. aeruginosa and the prevalence of multilineage infections; 2) seek evidence for cross-infection or common source acquisition; and 3) characterise P. aeruginosa adaptations.189 isolates, obtained from the sputa of 91 patients attending 16 adult bronchiectasis centres in the UK, were whole-genome sequenced.Bronchiectasis isolates were representative of the wider P. aeruginosa population. Of 24 patients from whom multiple isolates were examined, there were seven examples of multilineage infections, probably arising from multiple infection events. The number of nucleotide variants between genomes of isolates from different patients was in some cases similar to the variations observed between isolates from individual patients, implying the possible occurrence of cross-infection or common source acquisition.Our data indicate that during infections of bronchiectasis patients, P. aeruginosa populations adapt by accumulating loss-of-function mutations, leading to changes in phenotypes including different modes of iron acquisition and variations in biofilm-associated polysaccharides. The within-population diversification suggests that larger scale longitudinal surveillance studies will be required to capture cross-infection or common source acquisition events at an early stage.


Assuntos
Bronquiectasia/microbiologia , Infecção Hospitalar/microbiologia , Infecções por Pseudomonas/complicações , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Biofilmes , Bronquiectasia/fisiopatologia , Fibrose Cística , Humanos , Fenótipo , Pseudomonas aeruginosa/isolamento & purificação , Escarro/microbiologia , Reino Unido , Fatores de Virulência , Sequenciamento Completo do Genoma
12.
PLoS Pathog ; 11(8): e1005129, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26313907

RESUMO

Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa's ability to colonize the GI tract but does decrease P. aeruginosa's cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease.


Assuntos
Candida albicans/fisiologia , Oligopeptídeos/antagonistas & inibidores , Fenóis/antagonistas & inibidores , Pseudomonas aeruginosa/patogenicidade , Tiazóis/antagonistas & inibidores , Animais , Farneseno Álcool/farmacologia , Feminino , Trato Gastrointestinal/microbiologia , Ferro/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Oligopeptídeos/biossíntese , Virulência
13.
J Biol Chem ; 290(40): 24424-37, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26272617

RESUMO

Thiol dioxygenation is the initial oxidation step that commits a thiol to important catabolic or biosynthetic pathways. The reaction is catalyzed by a family of specific non-heme mononuclear iron proteins each of which is reported to react efficiently with only one substrate. This family of enzymes includes cysteine dioxygenase, cysteamine dioxygenase, mercaptosuccinate dioxygenase, and 3-mercaptopropionate dioxygenase. Using sequence alignment to infer cysteine dioxygenase activity, a cysteine dioxygenase homologue from Pseudomonas aeruginosa (p3MDO) has been identified. Mass spectrometry of P. aeruginosa under standard growth conditions showed that p3MDO is expressed in low levels, suggesting that this metabolic pathway is available to the organism. Purified recombinant p3MDO is able to oxidize both cysteine and 3-mercaptopropionic acid in vitro, with a marked preference for 3-mercaptopropionic acid. We therefore describe this enzyme as a 3-mercaptopropionate dioxygenase. Mössbauer spectroscopy suggests that substrate binding to the ferrous iron is through the thiol but indicates that each substrate could adopt different coordination geometries. Crystallographic comparison with mammalian cysteine dioxygenase shows that the overall active site geometry is conserved but suggests that the different substrate specificity can be related to replacement of an arginine by a glutamine in the active site.


Assuntos
Ácido 3-Mercaptopropiônico/química , Proteínas de Bactérias/química , Cisteína Dioxigenase/química , Pseudomonas aeruginosa/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Ferro/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Oxigênio/química , Consumo de Oxigênio , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Espectrofotometria , Especificidade por Substrato , Compostos de Sulfidrila
14.
J Bacteriol ; 196(12): 2265-76, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24727222

RESUMO

Cystic fibrosis (CF) patients suffer from chronic bacterial lung infections, most notably by Pseudomonas aeruginosa, which persists for decades in the lungs and undergoes extensive evolution. P. aeruginosa requires iron for virulence and uses the fluorescent siderophore pyoverdine to scavenge and solubilize ferric iron during acute infections. Pyoverdine mutants accumulate in the lungs of some CF patients, however, suggesting that the heme and ferrous iron acquisition pathways of P. aeruginosa are more important in this environment. Here, we sought to determine how evolution of P. aeruginosa in the CF lung affects iron acquisition and regulatory pathways through the use of longitudinal CF isolates. These analyses demonstrated a significant reduction of siderophore production during the course of CF lung infection in nearly all strains tested. Mass spectrometry analysis of one of these strains showed that the later CF isolate has streamlined the metabolic flux of extracellular heme through the HemO heme oxygenase, resulting in more-efficient heme utilization. Moreover, gene expression analysis shows that iron regulation via the PrrF small RNAs (sRNAs) is enhanced in the later CF isolate. Finally, analysis of P. aeruginosa gene expression in the lungs of various CF patients demonstrates that both PrrF and HemO are consistently expressed in the CF lung environment. Combined, these results suggest that heme is a critical source of iron during prolonged infection of the CF lung and that changes in iron and heme regulatory pathways play a crucial role in adaptation of P. aeruginosa to this ever-changing host environment.


Assuntos
Fibrose Cística/microbiologia , Homeostase/fisiologia , Ferro/metabolismo , Oligopeptídeos/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Adaptação Fisiológica , Adolescente , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Criança , Pré-Escolar , Regulação Bacteriana da Expressão Gênica/fisiologia , Homeostase/genética , Humanos , Mutação , Oligopeptídeos/genética , Pigmentos Biológicos , Pseudomonas aeruginosa/genética , Adulto Jovem
15.
Appl Environ Microbiol ; 80(18): 5723-31, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25015884

RESUMO

Pyoverdine is a fluorescent nonribosomal peptide siderophore made by fluorescent pseudomonads. The Pseudomonas aeruginosa nonribosomal peptide synthetase (NRPS) PvdD contains two modules that each incorporate an l-threonine residue at the C-terminal end of pyoverdine. In an attempt to generate modified pyoverdine peptides, we substituted alternative-substrate-specifying adenylation (A) and peptide bond-catalyzing condensation (C) domains into the second module of PvdD. When just the A domain was substituted, the resulting strains produced only wild-type pyoverdine-at high levels if the introduced A domain specified threonine or at trace levels otherwise. The high levels of pyoverdine synthesis observed whenever the introduced A domain specified threonine indicated that these nonnative A domains were able to communicate effectively with the PvdD C domain. Moreover, the unexpected observation that non-threonine-specifying A domains nevertheless incorporated threonine into pyoverdine suggests that the native PvdD C domain exhibited stronger selectivity than these A domains for the incorporated amino acid substrate (i.e., misactivation of a threonine residue by the introduced A domains was more frequent than misincorporation of a nonthreonine residue by the PvdD C domain). In contrast, substitution of both the C and A domains of PvdD generated high yields of rationally modified pyoverdines in two instances, these pyoverdines having either a lysine or a serine residue in place of the terminal threonine. However, C-A domain substitution more commonly yielded a truncated peptide product, likely due to stalling of synthesis on a nonfunctional recombinant NRPS template.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oligopeptídeos/biossíntese , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Oligopeptídeos/química , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Treonina/metabolismo
16.
BMC Microbiol ; 14: 287, 2014 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-25433393

RESUMO

BACKGROUND: Synthesis and uptake of pyoverdine, the primary siderophore of the opportunistic pathogen Pseudomonas aeruginosa, is dependent on two extra-cytoplasmic function (ECF) sigma factors, FpvI and PvdS. FpvI and PvdS are required for expression of the ferri-pyoverdine receptor gene fpvA and of pyoverdine synthesis genes respectively. In the absence of pyoverdine the anti-sigma factor FpvR that spans the cytoplasmic membrane inhibits the activities of both FpvI and PvdS, despite the two sigma factors having low sequence identity. RESULTS: To investigate the interactions of FpvR with FpvI and PvdS, we first used a tandem affinity purification system to demonstrate binding of PvdS by the cytoplasmic region of FpvR in P. aeruginosa at physiological levels. The cytoplasmic region of FpvR bound to and inhibited both FpvI and PvdS when the proteins were co-expressed in Escherichia coli. Each sigma factor was then subjected to error prone PCR and site-directed mutagenesis to identify mutations that increased sigma factor activity in the presence of FpvR. In FpvI, the amino acid changes clustered around conserved region four of the protein and are likely to disrupt interactions with FpvR. Deletion of five amino acids from the C-terminal end of FpvI also disrupted interactions with FpvR. Mutations in PvdS were present in conserved regions two and four. Most of these mutations as well as deletion of thirteen amino acids from the C-terminal end of PvdS increased sigma factor activity independent of whether FpvR was present, suggesting that they increase either the stability of PvdS or its affinity for core RNA polymerase. CONCLUSIONS: These data show that FpvR binds to PvdS in both P. aeruginosa and E. coli, inhibiting its activity. FpvR also binds to and inhibits FpvI and binding of FpvI is likely to involve conserved region four of the sigma factor protein.


Assuntos
Regulação Bacteriana da Expressão Gênica , Oligopeptídeos/metabolismo , Pseudomonas aeruginosa/fisiologia , Fator sigma/antagonistas & inibidores , Fator sigma/metabolismo , Transdução de Sinais , Análise Mutacional de DNA , Mutagênese Sítio-Dirigida , Ligação Proteica , Mapeamento de Interação de Proteínas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Deleção de Sequência
17.
Front Cell Infect Microbiol ; 14: 1352339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808066

RESUMO

Antibiotic drug combination therapy is critical for the successful treatment of infections caused by multidrug resistant pathogens. We investigated the efficacy of ß-lactam and ß-lactam/ß-lactamase inhibitor combinations with other antibiotics, against the hypervirulent, ceftazidime/avibactam resistant Pseudomonas aeruginosa Liverpool epidemic strain (LES) B58. Although minimum inhibitory concentrations in vitro differed by up to eighty-fold between standard and host-mimicking media, combinatorial effects only marginally changed between conditions for some combinations. Effective combinations in vitro were further tested in a chronic, high-density murine infection model. Colistin and azithromycin demonstrated combinatorial effects with ceftazidime and ceftazidime/avibactam both in vitro and in vivo. Conversely, while tobramycin and tigecycline exhibited strong synergy in vitro, this effect was not observed in vivo. Our approach of using host-mimicking conditions and a sophisticated animal model to evaluate drug synergy against bacterial pathogens represents a promising approach. This methodology may offer insights into the prediction of combination therapy outcomes and the identification of potential treatment failures.


Assuntos
Abscesso , Antibacterianos , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Camundongos , Abscesso/tratamento farmacológico , Abscesso/microbiologia , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Feminino , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Azitromicina/administração & dosagem , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Colistina/administração & dosagem
18.
Infect Immun ; 81(8): 2697-704, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23690396

RESUMO

Pseudomonas aeruginosa chronically infects the lungs of more than 80% of adult patients with cystic fibrosis (CF) and is a major contributor to the progression of disease pathology. P. aeruginosa requires iron for growth and has multiple iron uptake systems that have been studied in bacteria grown in laboratory culture. The purpose of this research was to determine which of these are active during infection in CF. RNA was extracted from 149 sputum samples obtained from 23 CF patients. Reverse transcription-quantitative real-time PCR (RT-qPCR) was used to measure the expression of P. aeruginosa genes encoding transport systems for the siderophores pyoverdine and pyochelin, for heme, and for ferrous ions. Expression of P. aeruginosa genes could be quantified in 89% of the sputum samples. Expression of genes associated with siderophore-mediated iron uptake was detected in most samples but was at low levels in some samples, indicating that other iron uptake mechanisms are active. Expression of genes encoding heme transport systems was also detected in most samples, indicating that heme uptake occurs during infection in CF. feoB expression was detected in all sputum samples, implying an important role for ferrous ion uptake by P. aeruginosa in CF. Our data show that multiple P. aeruginosa iron uptake mechanisms are active in chronic CF infection and that RT-qPCR of RNA extracted from sputum provides a powerful tool for investigating bacterial physiology during infection in CF.


Assuntos
Fibrose Cística/microbiologia , Ferro/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , RNA Bacteriano/análise , Adulto , Proteínas de Transporte de Cátions/análise , Proteínas de Transporte de Cátions/biossíntese , Doença Crônica , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/biossíntese , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sideróforos/análise , Sideróforos/biossíntese , Escarro/química , Adulto Jovem
19.
Eur Respir J ; 42(6): 1723-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23143541

RESUMO

The aerobic Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen responsible for life-threatening acute and chronic infections in humans. As part of chronic infection P. aeruginosa forms biofilms, which shield the encased bacteria from host immune clearance and provide an impermeable and protective barrier against currently available antimicrobial agents. P. aeruginosa has an absolute requirement for iron for infection success. By influencing cell-cell communication (quorum sensing) and virulence factor expression, iron is a powerful regulator of P. aeruginosa behaviour. Consequently, the imposed perturbation of iron acquisition systems has been proposed as a novel therapeutic approach to the treatment of P. aeruginosa biofilm infection. In this review, we explore the influence of iron availability on P. aeruginosa infection in the lungs of the people with the autosomal recessive condition cystic fibrosis as an archetypal model of chronic P. aeruginosa biofilm infection. Novel therapeutics aimed at disrupting P. aeruginosa are discussed, with an emphasis placed on identifying the barriers that need to be overcome in order to translate these promising in vitro agents into effective therapies in human pulmonary infections.


Assuntos
Fibrose Cística/complicações , Fibrose Cística/microbiologia , Ferro/farmacocinética , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa , Anti-Infecciosos/uso terapêutico , Biofilmes , Quelantes/química , Regulação Bacteriana da Expressão Gênica , Homeostase , Humanos , Ferro/química , Lactoferrina/química , Pulmão/microbiologia , Infecções por Pseudomonas/microbiologia , Percepção de Quorum/genética , Infecções Respiratórias/microbiologia , Infecções Respiratórias/prevenção & controle , Tiocianatos/química
20.
Antibiotics (Basel) ; 12(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671353

RESUMO

Pseudomonas aeruginosa causes a wide range of acute and chronic infections. Aminoglycosides are a cornerstone of treatment, but isolates are often resistant. The purpose of this research was to better understand the genetic basis of aminoglycoside resistance in P. aeruginosa. Bioinformatic approaches identified mutations in resistance-associated genes in the clinical isolates of P. aeruginosa. The common mutations were then engineered into the genome of P. aeruginosa reference strain PAO1. Mutations in the elongation factor gene fusA1 caused the biggest reduction in aminoglycoside susceptibility, with mutations in the two-component regulator gene amgS and the efflux pump regulator gene mexZ having less impact. This susceptibility was further reduced by combinations of mutations. Mutations in fusA1, amgS and mexZ all increased the expression of the mexXY efflux pump that is strongly associated with aminoglycoside resistance. Furthermore, the fusA1 amgS mexZ triple mutant had the highest efflux pump gene expression. Engineering fusA1 and amgS mutants lacking this efflux pump showed that fusA1 and amgS also reduce aminoglycoside susceptibility through additional mechanisms. The fusA1 and amgS mutations reduced bacterial growth, showing that these mutations have a fitness cost. Our findings demonstrate the complex interplay between mutations, efflux pump expression and other mechanisms for reducing the susceptibility of P. aeruginosa to aminoglycosides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA