Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biochem ; 117(10): 2201-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27191821

RESUMO

Biomarkers such as DNA, RNA, and protein are powerful tools in clinical diagnostics and therapeutic development for many diseases. Identifying RNA expression at the single cell level within the morphological context by RNA in situ hybridization provides a great deal of information on gene expression changes over conventional techniques that analyze bulk tissue, yet widespread use of this technique in the clinical setting has been hampered by the dearth of automated RNA ISH assays. Here we present an automated version of the RNA ISH technology RNAscope that is adaptable to multiple automation platforms. The automated RNAscope assay yields a high signal-to-noise ratio with little to no background staining and results comparable to the manual assay. In addition, the automated duplex RNAscope assay was able to detect two biomarkers simultaneously. Lastly, assay consistency and reproducibility were confirmed by quantification of TATA-box binding protein (TBP) mRNA signals across multiple lots and multiple experiments. Taken together, the data presented in this study demonstrate that the automated RNAscope technology is a high performance RNA ISH assay with broad applicability in biomarker research and diagnostic assay development. J. Cell. Biochem. 117: 2201-2208, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Biomarcadores Tumorais/genética , Fixadores/química , Formaldeído/química , Neoplasias/genética , Inclusão em Parafina/métodos , RNA/metabolismo , Automação , Biomarcadores Tumorais/análise , Células HeLa , Humanos , Hibridização In Situ , Neoplasias/patologia , RNA/genética
2.
J Immunol Methods ; 270(2): 211-26, 2002 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12379326

RESUMO

We describe methods for the production, purification, and characterization of clinical grade (cGMP) exosomes derived from antigen presenting cells (APCs). Exosomes have been shown to have immunotherapeutic properties through their presentation of biologically relevant antigens [Nat. Med. 4 (1998) 594] and are being developed as an alternative to cellular therapies. Exosomes are 50-90-nm-diameter vesicles secreted from multivesicular bodies (MVBs) found in a variety of both hematopoietic and tumor cells. These particles contain antigen presenting molecules (MHC class I, MHC class II, and CD1), tetraspan molecules (CD9, CD63, CD81), adhesion molecules (CD11b and CD54), and costimulatory molecules (CD86); hence, providing them the necessary machinery required for generating a potent immune response [J. Biol. Chem. 273 (1998) 20121; J. Cell. Sci. 113 (2000) 3365; J. Immunol. Methods 247 (2001) 163; J. Immunol. 166 (2001) 7309]. Exosomes from monocyte-derived dendritic cells (MDDCs) were rapidly purified (e.g. 4-6 h of a 2-3 l culture) based on their unique size and density. Ultrafiltration of the clarified supernatant through a 500-kDa membrane and ultracentrifugation into a 30% sucrose/deuterium oxide (D2O) (98%) cushion (density 1.210 g/cm3) reduced the volume and protein concentration approximately 200- and 1000-fold, respectively. The percentage recovery of exosomes ranged from 40% to 50% based on the exosome MHC class II concentration of the starting clarified supernatant. This methodology was extended to a miniscale process with comparable results. Conversely, the classical differential centrifugation technique is a more lengthy and variable process resulting in exosomes being contaminated with media proteins and containing only 5-25% of the starting exosome MHC class II concentration; hence, making it difficult for their use in clinical development. Lastly, we developed the following quality control assays to standardize the exosome vaccine: quantity (concentration of MHC class II) and protein characterization (FACS). The combination of a rapid and reproducible purification method and quality control assays for exosomes has allowed for its evaluation as a cancer vaccine in clinical trials [Proc. Am. Soc. Oncol. 21 (2002) 11a].


Assuntos
Vesículas Citoplasmáticas , Células Dendríticas , Albuminas , Antígenos CD/análise , Centrifugação , Meios de Cultura , Vesículas Citoplasmáticas/imunologia , Células Dendríticas/imunologia , Haptoglobinas , Antígenos de Histocompatibilidade Classe II/análise , Humanos , Imunofenotipagem , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA