RESUMO
This study presents a novel approach by utilizing poly(vinylpyrrolidone)s (PVPs) with various topologies as potential matrices for the liquid crystalline (LC) active pharmaceutical ingredient itraconazole (ITZ). We examined amorphous solid dispersions (ASDs) composed of ITZ and (i) self-synthesized linear PVP, (ii) self-synthesized star-shaped PVP, and (iii) commercial linear PVP K30. Differential scanning calorimetry, X-ray diffraction, and broad-band dielectric spectroscopy were employed to get a comprehensive insight into the thermal and structural properties, as well as global and local molecular dynamics of ITZ-PVP systems. The primary objective was to assess the influence of PVPs' topology and the composition of ASD on the LC ordering, changes in the temperature of transitions between mesophases, the rate of their restoration, and finally the solubility of ITZ in the prepared ASDs. Our research clearly showed that regardless of the PVP type, both LC transitions, from smectic (Sm) to nematic (N) and from N to isotropic (I) phases, are effectively suppressed. Moreover, a significant difference in the miscibility of different PVPs with the investigated API was found. This phenomenon also affected the solubility of API, which was the greatest, up to 100 µg/mL in the case of starPVP 85:15 w/w mixture in comparison to neat crystalline API (5 µg/mL). Obtained data emphasize the crucial role of the polymer's topology in designing new pharmaceutical formulations.
Assuntos
Varredura Diferencial de Calorimetria , Itraconazol , Cristais Líquidos , Povidona , Solubilidade , Difração de Raios X , Itraconazol/química , Cristais Líquidos/química , Povidona/química , Varredura Diferencial de Calorimetria/métodos , Difração de Raios X/métodos , Polímeros/química , Antifúngicos/química , Composição de Medicamentos/métodos , Cristalização , Química Farmacêutica/métodosRESUMO
In this paper, we propose one-step synthetic strategies for obtaining well-defined linear and star-shaped polyvinylpyrrolidone (linPVP and starPVP). The produced macromolecules and a commercial PVP K30 with linear topology were investigated as potential matrices for suppressing metronidazole (MTZ) crystallization. Interestingly, during the formation of binary mixtures (BMs) containing different polymers and MTZ, we found that linear PVPs exhibit maximum miscibility with the drug at a 50:50 weight ratio (w/w), while the star-shaped polymer mixes with MTZ even at a 30:70 w/w. To explain these observations, comprehensive studies of MTZ-PVP formulations with various contents of both components were performed using Fourier-transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. The obtained results clearly showed that the polymer's topology plays a significant role in the type of interactions occurring between the matrix and MTZ. Additionally, we established that for MTZ-PVP 50:50 and 75:25 w/w BMs, linear polymers have the most substantial impact on inhibiting the crystallization of API. The star-shaped macromolecule turned out to be the least effective in stabilizing amorphous MTZ at these polymer concentrations. Nevertheless, long-term structural investigations of the MTZ-starPVP 30:70 w/w system (which is not achievable for linear PVPs) demonstrated its complete amorphousness for over one month.
RESUMO
In this paper, several experimental techniques, i.e., differential scanning calorimetry, X-ray diffraction, Fourier transform infrared, Raman, and broadband dielectric spectroscopy were applied to study the nature of the phase transitions in 1-adamantylamine (1-NH2-ADM, C10H17N) and 1-adamantanol (1-OH-ADM, C10H16O). Calorimetric measurements showed one and three endothermic peaks in thermograms for the latter and the former substance, respectively. Indeed, results of spectroscopic investigations indicated that the observed thermal events in 1-NH2-ADM correspond to transitions between various plastic crystal (PC) phases (I, II, III, IV), while the endothermic process in 1-OH-ADM can be assigned to a phase transition between the PC and the ordinary crystal (OC). Especially interesting were the outcomes of dielectric studies carried out both at ambient and high-pressure conditions, during heating and cooling cycles. They showed: i) noticeable changes in the frequency dependencies of the imaginary (ε'') and real (ε') parts of the complex dielectric permittivity that occurred around temperatures of the characteristic endothermic events detected by the calorimetry, and ii) significant fluctuations of ε'' and ε' at pressures attributed to the respective phase transitions. Moreover, the pressure coefficients of the phase transition temperatures were estimated to be approximately equal to 0.2 K/MPa for both compounds. In turn, volume variation (ΔV) at the PC (II)-PC (III) and PC (III)-PC (IV) transition temperatures for 1-NH2-ADM was essentially different than ΔV for the PC-OC transition in 1-OH-ADM.