Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 35(38)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958589

RESUMO

Green energy technology is generally becoming one of hot issues that need to be solved due to the adverse effects on the environment of fossil fuels. One of the strategies being studied and developed by theorists and experimentalists is the use of photoelectrochemical (PEC) cells, which are emerging as a candidate to produce hydrogen from water splitting. However, creating photoelectrodes that meet the requirements for PEC water splitting has emerged as the primary obstacle in bringing this technology to commercial fruition. Here, we construct a heterostructure, which consists of MoS2/TiO2/Au nanoparticles (NPs) to overcome the drawbacks of the photoanode. Owing to the dependence on charge transfer, the bandgap of MoS2/TiO2and the utilization the Au NPs as a stimulant for charges separation of TiO2by localized surface plasmon resonances effect as well as the increase of hot electron injection to cathode, leading to photocatalytic activities are improved. The results have recorded a significant increase in the photocurrent density from 2.3µAcm-2of TiO2to approximately 16.3µAcm-2of MoS2/TiO2/Au NPs. This work unveils a promising route to enhance the visible light adsorption and charge transfer in photo-electrode of the PEC cells by combining two-dimensional materials with metal NPs.

2.
J Chem Phys ; 155(7): 074701, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418937

RESUMO

We studied the dissociation of water (H2O*, with * denoting adspecies) on atomic oxygen (O*)-covered Rh nanoclusters (RhO* ) supported on a graphene film grown on a Ru(0001) surface [G/Ru(0001)] under ultrahigh-vacuum conditions and with varied surface-probe techniques and calculations based on density-functional theory. The graphene had a single rotational domain; its lattice expanded by about 5.7% to match the Ru substrate structurally better. The Rh clusters were grown by depositing Rh vapors onto G/Ru(0001); they had an fcc phase and grew in (111) orientation. Water adsorbed on the Rh clusters was dissociated exclusively in the presence of O*, like that on a Rh(111) single-crystal surface. Contrary to the case on Rh(111)O* , excess O* (even at a saturation level) on small RhO* clusters (diameter of 30-34 Å) continued to promote, instead of inhibiting, the dissociation of water; the produced hydroxyl (OH*) increased generally with the concentration of O* on the clusters. The difference results from more reactive O* on the RhO* clusters. O* on RhO* clusters activated the dissociation via both the formation of hydrogen bonds with H2O* and abstraction of H directly from H2O*, whereas O* on Rh(111)O* assisted the dissociation largely via the formation of hydrogen bonds, which was readily obstructed with an increased O* coverage. As the disproportionation (2 OH* → H2O* + O*) is endothermic on the RhO* clusters but exothermic on Rh(111)O* , OH* produced on RhO* clusters showed a thermal stability superior to that on the Rh(111)O* surface-thermally stable up to 400 K.

3.
ACS Appl Mater Interfaces ; 13(3): 4618-4625, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33445863

RESUMO

As the continuous miniaturization of floating-gate transistors approaches a physical limit, new innovations in device architectures, working principles, and device materials are in high demand. This study demonstrated a nonvolatile memory structure with multilevel data storage that features a van der Waals gate architecture made up of a partially oxidized surface layer/indium selenide (InSe) van der Waals interface. The key functionality of this proof-of-concept device is provided through the generation of charge-trapping sites via an indirect oxygen plasma treatment on the InSe surface layer. In contrast to floating-gate nonvolatile memory, these sites have the ability to retain charge without the help of a gate dielectric. Together with the layered structure, the surface layer with charge-trapping sites facilitates continual electrostatic doping in the underlying InSe layers. The van der Waals gating effect is further supported by trapped charge-induced core-level energy shifts and relative work function variations obtained from operando scanning X-ray photoelectron spectroscopy and Kelvin probe microscopy, respectively. On modulating the amount of electric field-induced trapped electrons by the electrostatic gate potential, eight distinct storage states remained over 3000 s. Moreover, the device exhibits a high current switching ratio of 106 within 11 cycles. The demonstrated characteristics suggest that the engineering of an InSe interface has potential applications for nonvolatile memory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA