RESUMO
Detecting large genomic inversions has long been challenging. In a new study, Porubsky et al. resolve these complex rearrangements in 41 individuals and discover wide regions that undergo recurrent inversions, some of which even toggle back and forth (Porubsky et al., 2022). Many of these regions are associated with genomic disorders.
Assuntos
Rearranjo Gênico , Genômica , HumanosRESUMO
Transposable elements (TEs) are insertional mutagens that contribute greatly to the plasticity of eukaryotic genomes, influencing the evolution and adaptation of species as well as physiology or disease in individuals. Measuring TE expression helps to understand not only when and where TE mobilization can occur but also how this process alters gene expression, chromatin accessibility or cellular signalling pathways. Although genome-wide gene expression assays such as RNA sequencing include transposon-derived transcripts, most computational analytical tools discard or misinterpret TE-derived reads. Emerging approaches are improving the identification of expressed TE loci and helping to discriminate TE transcripts that permit TE mobilization from chimeric gene-TE transcripts or pervasive transcription. Here we review the main challenges associated with the detection of TE expression, including mappability, insertional and internal sequence polymorphisms, and the diversity of the TE transcriptional landscape, as well as the different experimental and computational strategies to solve them.
Assuntos
Elementos de DNA Transponíveis/genética , Expressão Gênica , Animais , Humanos , Plantas , Polimorfismo Genético , Transcrição GênicaRESUMO
Trees are long-lived organisms that continuously adapt to their environments, a process in which epigenetic mechanisms are likely to play a key role. Via downregulation of the chromatin remodeler DECREASED IN DNA METHYLATION 1 (DDM1) in poplar (Populus tremula × Populus alba) RNAi lines, we examined how DNA methylation coordinates genomic and physiological responses to moderate water deficit. We compared the growth and drought response of two RNAi-ddm1 lines to wild-type (WT) trees under well-watered and water deficit/rewatering conditions, and analyzed their methylomes, transcriptomes, mobilomes and phytohormone contents in the shoot apical meristem. The RNAi-ddm1 lines were more tolerant to drought-induced cavitation but did not differ in height or stem diameter growth. About 5000 differentially methylated regions were consistently detected in both RNAi-ddm1 lines, colocalizing with 910 genes and 89 active transposable elements. Under water deficit conditions, 136 differentially expressed genes were found, including many involved in phytohormone pathways; changes in phytohormone concentrations were also detected. Finally, the combination of hypomethylation and drought led to the mobility of two transposable elements. Our findings suggest major roles for DNA methylation in regulation of genes involved in hormone-related stress responses, and the maintenance of genome integrity through repression of transposable elements.
Assuntos
Populus , Metilação de DNA/genética , Secas , Regulação da Expressão Gênica de Plantas , Meristema , Populus/genética , Interferência de RNARESUMO
Retrotransposons are mobile genetic elements abundant in plant and animal genomes. While efficiently silenced by the epigenetic machinery, they can be reactivated upon stress or during development. Their level of transcription not reflecting their transposition ability, it is thus difficult to evaluate their contribution to the active mobilome. Here we applied a simple methodology based on the high throughput sequencing of extrachromosomal circular DNA (eccDNA) forms of active retrotransposons to characterize the repertoire of mobile retrotransposons in plants. This method successfully identified known active retrotransposons in both Arabidopsis and rice material where the epigenome is destabilized. When applying mobilome-seq to developmental stages in wild type rice, we identified PopRice as a highly active retrotransposon producing eccDNA forms in the wild type endosperm. The mobilome-seq strategy opens new routes for the characterization of a yet unexplored fraction of plant genomes.
Assuntos
DNA Circular/genética , Sequências Repetitivas Dispersas/genética , Plantas/genética , Retroelementos/genética , Arabidopsis/genética , DNA Circular/química , DNA de Plantas/química , DNA de Plantas/genética , Endosperma/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Mutagênese Insercional , Oryza/genética , Filogenia , Folhas de Planta/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaAssuntos
Elementos de DNA Transponíveis , Neoplasias , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/terapiaRESUMO
Long interspersed element 1 (L1) retrotransposons are implicated in human disease and evolution. Their global activity is repressed by DNA methylation, but deciphering the regulation of individual copies has been challenging. Here, we combine short- and long-read sequencing to unveil L1 methylation heterogeneity across cell types, families, and individual loci and elucidate key principles involved. We find that the youngest primate L1 families are specifically hypomethylated in pluripotent stem cells and the placenta but not in most tumors. Locally, intronic L1 methylation is intimately associated with gene transcription. Conversely, the L1 methylation state can propagate to the proximal region up to 300 bp. This phenomenon is accompanied by the binding of specific transcription factors, which drive the expression of L1 and chimeric transcripts. Finally, L1 hypomethylation alone is typically insufficient to trigger L1 expression due to redundant silencing pathways. Our results illuminate the epigenetic and transcriptional interplay between retrotransposons and their host genome.
Assuntos
Metilação de DNA , Retroelementos , Animais , Humanos , Retroelementos/genética , Metilação de DNA/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Fatores de Transcrição/genética , Primatas/genética , Epigênese Genética/genéticaRESUMO
Retrotransposition of LINE-1 (L1) elements represents a major source of insertional polymorphisms in mammals, and their mutagenic activity is restricted by silencing mechanisms, such as DNA methylation. Despite a very high level of sequence identity between copies, their internal sequence contains small nucleotide polymorphisms (SNPs) that can alter their activity. Such internal SNPs can also appear in different alleles of a given L1 locus. Given their repetitive nature and relatively long size, short-read sequencing approaches have limited access to L1 internal sequence or DNA methylation state. Here, we describe a targeted method to specifically sequence more than a hundred L1-containing loci in parallel and measure their DNA methylation levels using nanopore long-read sequencing. Each targeted locus is sequenced at high coverage (~45X) with unambiguously mapped reads spanning the entire L1 element, as well as its flanking sequences over several kilobases. Our protocol, modified from the nanopore Cas9 targeted sequencing (nCATS) strategy, provides a full and haplotype-resolved L1 sequence and DNA methylation levels. It introduces a streamlined and multiplex approach to synthesize guide RNAs and a quantitative PCR (qPCR)-based quality check during library preparation for cost-effective L1 sequencing. More generally, this method can be applied to any type of transposable elements and organisms.
Assuntos
Elementos Nucleotídeos Longos e Dispersos , Nanoporos , Animais , Retroelementos/genética , Metilação de DNA , Mutagênese Insercional , Nucleotídeos , MamíferosRESUMO
The Human Silencing Hub (HUSH) complex constituted of TASOR, MPP8 and Periphilin recruits the histone methyl-transferase SETDB1 to spread H3K9me3 repressive marks across genes and transgenes in an integration site-dependent manner. The deposition of these repressive marks leads to heterochromatin formation and inhibits gene expression, but the underlying mechanism is not fully understood. Here, we show that TASOR silencing or HIV-2 Vpx expression, which induces TASOR degradation, increases the accumulation of transcripts derived from the HIV-1 LTR promoter at a post-transcriptional level. Furthermore, using a yeast 2-hybrid screen, we identify new TASOR partners involved in RNA metabolism including the RNA deadenylase CCR4-NOT complex scaffold CNOT1. TASOR and CNOT1 synergistically repress HIV expression from its LTR. Similar to the RNA-induced transcriptional silencing complex found in fission yeast, we show that TASOR interacts with the RNA exosome and RNA Polymerase II, predominantly under its elongating state. Finally, we show that TASOR facilitates the association of RNA degradation proteins with RNA polymerase II and is detected at transcriptional centers. Altogether, we propose that HUSH operates at the transcriptional and post-transcriptional levels to repress HIV proviral expression.
Assuntos
Repressão Epigenética , HIV-2/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estabilidade de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Montagem e Desmontagem da Cromatina , Expressão Gênica , Inativação Gênica , Infecções por HIV/virologia , Repetição Terminal Longa de HIV , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Fosfoproteínas , Provírus/genética , RNA Polimerase II/metabolismo , SchizosaccharomycesRESUMO
Active transposable elements (TEs) generate insertion polymorphisms that can be detected through genome resequencing strategies. However, these techniques may have limitations for organisms with large genomes or for somatic insertions. Here, we present a method that takes advantage of the extrachromosomal circular DNA (eccDNA) forms of actively transposing TEs in order to detect and characterize active TEs in any plant or animal tissue. Mobilome-seq consists in selectively amplifying and sequencing eccDNAs. It relies on linear digestion of genomic DNA followed by rolling circle amplification of circular DNA. Both active DNA transposons and retrotransposons can be identified using this technique.
Assuntos
Elementos de DNA Transponíveis , DNA Circular/isolamento & purificação , Animais , DNA de Plantas/genética , Técnicas de Amplificação de Ácido Nucleico , Plantas/genética , Análise de Sequência de DNARESUMO
Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans.
Assuntos
Arachis/genética , Arachis/classificação , Argentina , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Metilação de DNA , DNA de Plantas/genética , Domesticação , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Hibridização Genética , Fenótipo , Poliploidia , Recombinação Genética , Especificidade da Espécie , TetraploidiaRESUMO
Transposable elements (TEs) were first identified through the polymorphisms they induced in plants and animals. Genomic studies have later revealed that TEs were highly abundant in eukaryotic genomes. Recently, more precise single individual genomic analyses have unravelled the huge diversity of TE insertions in many plant and animal species. In most cases the stress conditions behind this diversity are not known and neither is the adaptive capacity of these natural TE-induced variants. Here, we review some of the most recent examples of TE-related impacts on gene expression at the locus or the genome level and discuss the rich diversity of the TE repertoire and its potential role in adaptive evolution.
Assuntos
Elementos de DNA Transponíveis/genética , Eucariotos/genética , Evolução Molecular , Genoma/genética , Animais , Expressão Gênica/genética , GenômicaRESUMO
The RNAi pathway confers antiviral immunity in insects. Virus-specific siRNA responses are amplified via the reverse transcription of viral RNA to viral DNA (vDNA). The nature, biogenesis, and regulation of vDNA are unclear. We find that vDNA produced during RNA virus infection of Drosophila and mosquitoes is present in both linear and circular forms. Circular vDNA (cvDNA) is sufficient to produce siRNAs that confer partially protective immunity when challenged with a cognate virus. cvDNAs bear homology to defective viral genomes (DVGs), and DVGs serve as templates for vDNA and cvDNA synthesis. Accordingly, DVGs promote the amplification of vDNA-mediated antiviral RNAi responses in infected Drosophila. Furthermore, vDNA synthesis is regulated by the DExD/H helicase domain of Dicer-2 in a mechanism distinct from its role in siRNA generation. We suggest that, analogous to mammalian RIG-I-like receptors, Dicer-2 functions like a pattern recognition receptor for DVGs to modulate antiviral immunity in insects.
Assuntos
Antivirais/imunologia , DNA Viral/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/imunologia , RNA Helicases/metabolismo , Vírus de RNA/imunologia , Ribonuclease III/metabolismo , Animais , Arbovírus/imunologia , Arbovírus/patogenicidade , Culicidae/imunologia , RNA Helicases DEAD-box/metabolismo , Proteínas de Drosophila/genética , Genes Virais/genética , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Mutação Puntual , RNA Helicases/genética , Interferência de RNA/imunologia , Infecções por Vírus de RNA , Vírus de RNA/genética , Vírus de RNA/patogenicidade , RNA Interferente Pequeno/genética , RNA Viral/metabolismo , Ribonuclease III/genética , Carga Viral , Replicação ViralRESUMO
BACKGROUND: Retrotransposons play a central role in plant evolution and could be a powerful endogenous source of genetic and epigenetic variability for crop breeding. To ensure genome integrity several silencing mechanisms have evolved to repress retrotransposon mobility. Even though retrotransposons fully depend on transcriptional activity of the host RNA polymerase II (Pol II) for their mobility, it was so far unclear whether Pol II is directly involved in repressing their activity. RESULTS: Here we show that plants defective in Pol II activity lose DNA methylation at repeat sequences and produce more extrachromosomal retrotransposon DNA upon stress in Arabidopsis and rice. We demonstrate that combined inhibition of both DNA methylation and Pol II activity leads to a strong stress-dependent mobilization of the heat responsive ONSEN retrotransposon in Arabidopsis seedlings. The progenies of these treated plants contain up to 75 new ONSEN insertions in their genome which are stably inherited over three generations of selfing. Repeated application of heat stress in progeny plants containing increased numbers of ONSEN copies does not result in increased activation of this transposon compared to control lines. Progenies with additional ONSEN copies show a broad panel of environment-dependent phenotypic diversity. CONCLUSIONS: We demonstrate that Pol II acts at the root of transposon silencing. This is important because it suggests that Pol II can regulate the speed of plant evolution by fine-tuning the amplitude of transposon mobility. Our findings show that it is now possible to study induced transposon bursts in plants and unlock their use to induce epigenetic and genetic diversity for crop breeding.
Assuntos
Melhoramento Vegetal , RNA Polimerase II/antagonistas & inibidores , Retroelementos , Arabidopsis/genética , Metilação de DNA , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , RNA Polimerase II/metabolismoRESUMO
A complex signaling network involving voltage-gated potassium channels from the Shaker family contributes to the regulation of stomatal aperture. Several kinases and phosphatases have been shown to be crucial for ABA-dependent regulation of the ion transporters. To date, the Ca2+ -dependent regulation of Shaker channels by Ca2+ -dependent protein kinases (CPKs) is still elusive. A functional screen in Xenopus oocytes was launched to identify such CPKs able to regulate the three main guard cell Shaker channels KAT1, KAT2, and GORK. Seven guard cell CPKs were tested and multiple CPK/Shaker couples were identified. Further work on CPK33 indicates that GORK activity is enhanced by CPK33 and unaffected by a nonfunctional CPK33 (CPK33-K102M). Furthermore, Ca2+ -induced stomatal closure is impaired in two cpk33 mutant plants.