Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(3)2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30764543

RESUMO

Colorectal cancer is the source of one of the most common cancer-related deaths worldwide, where the main cause of patient mortality remains metastasis. The aim of this study was to determine the role of CCL7 (chemokine (C-C motif) ligand 7) in tumor progression and finding whether it could predict survival of colorectal cancer patients. Initially, our study focused on the crosstalk between mesenchymal stem cells (MSCs) and CT26 colon carcinoma cells and resulted in identifying CCL7 as a chemokine upregulated in CT26 colon cancer cells cocultured with MSCs, compared with CT26 in monoculture in vitro. Moreover, we showed that MSCs enhance CT26 tumor cell proliferation and migration. We analyzed the effect of CCL7 overexpression on tumor progression in a murine CT26 model, where cells overexpressing CCL7 accelerated the early phase of tumor growth and caused higher lung metastasis rates compared with control mice. Microarray analysis revealed that tumors overexpressing CCL7 had lower expression of immunoglobulins produced by B lymphocytes. Additionally, using Jh mutant mice, we confirmed that in the CT26 model, CCL7 has an immunoglobulin-, and thereby, B-cell-dependent effect on metastasis formation. Finally, higher expression of CCL7 receptor CCR2 (C-C chemokine receptor type 2) was associated with shorter overall survival of colorectal cancer patients. Altogether, we showed that CCL7 is essentially involved in the progression of colorectal cancer in a CT26 mouse model and that the expression of its receptor CCR2 could be related to a different outcome pattern of patients with colorectal carcinoma.


Assuntos
Quimiocina CCL7/genética , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Receptores CCR2/genética , Regulação para Cima , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quimiocina CCL7/análise , Neoplasias do Colo/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Receptores CCR2/análise
2.
Int J Cancer ; 142(6): 1266-1276, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29067692

RESUMO

Glioma stem cells (GSCs) are glioblastoma (GBM) cells that are resistant to therapy and can give rise to recurrent tumors. The identification of patient-related factors that support GSCs is thus necessary to design effective therapies for GBM patients. Glucocorticoids (GCs) are used to treat GBM-associated edema. However, glucocorticoids participate in the physiological response to psychosocial stress, which has been linked to poor cancer prognosis. This raises concern that glucocorticoids affect the tumor and GSCs. Here, we treated primary human GBM cells with dexamethasone and evaluated GC-driven changes in cell morphology, proliferation, migration, gene expression, secretory activity and growth as neurospheres. Dexamethasone treatment of GBM cells appeared to promote the development of a GSC-like phenotype and conferred resistance to physiological stress and chemotherapy. We also analyzed a potential correlation between GC treatment and tumor recurrence after surgical excision in a population-based consecutive cohort of 48 GBM patients, adjusted for differences in known prognostic factors concerning baseline and treatment characteristics. In this cohort, we found a negative correlation between GC intake and progression-free survival, regardless of the MGMT methylation status. In conclusion, our findings raise concern that treatment of GBM with GCs may compromise the efficacy of chemotherapy and may support a GSC population, which could contribute to tumor recurrence and the poor prognosis of the disease.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/terapia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/terapia , Glucocorticoides/efeitos adversos , Recidiva Local de Neoplasia/prevenção & controle , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Encéfalo/patologia , Encéfalo/cirurgia , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Quimiorradioterapia Adjuvante/métodos , Dexametasona/efeitos adversos , Intervalo Livre de Doença , Feminino , Glioblastoma/complicações , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Procedimentos Neurocirúrgicos , Cultura Primária de Células , Prognóstico , Estresse Fisiológico/efeitos dos fármacos , Resultado do Tratamento , Células Tumorais Cultivadas
3.
BMC Cancer ; 18(1): 154, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409474

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common malignant brain tumor with median survival of 12-15 months. Owing to uncertainty in clinical outcome, additional prognostic marker(s) apart from existing markers are needed. Since overexpression of endothelin B receptor (ETBR) has been demonstrated in gliomas, we aimed to test whether ETBR is a useful prognostic marker in GBM and examine if the clinically available endothelin receptor antagonists (ERA) could be useful in the disease treatment. METHODS: Data from The Cancer Genome Atlas and the Gene Expression Omnibus database were analyzed to assess ETBR expression. For survival analysis, glioblastoma samples from 25 Swedish patients were immunostained for ETBR, and the findings were correlated with clinical history. The druggability of ETBR was assessed by protein-protein interaction network analysis. ERAs were analyzed for toxicity in in vitro assays with GBM and breast cancer cells. RESULTS: By bioinformatics analysis, ETBR was found to be upregulated in glioblastoma patients, and its expression levels were correlated with reduced survival. ETBR interacts with key proteins involved in cancer pathogenesis, suggesting it as a druggable target. In vitro viability assays showed that ERAs may hold promise to treat glioblastoma and breast cancer. CONCLUSIONS: ETBR is overexpressed in glioblastoma and other cancers and may be a prognostic marker in glioblastoma. ERAs may be useful for treating cancer patients.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Receptor de Endotelina B/genética , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Antagonistas dos Receptores de Endotelina/uso terapêutico , Feminino , Redes Reguladoras de Genes , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Prognóstico , Receptor de Endotelina B/metabolismo
4.
J Gen Virol ; 98(5): 1058-1072, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28589873

RESUMO

Human cytomegalovirus (HCMV) infection results in the production of virions, dense bodies (DBs) and non-infectious enveloped particles, all of which incorporate proteins and RNAs that can be transferred to host cells. Here, we investigated whether virions and DBs also carry microRNAs (miRNAs) and assessed their delivery and functionality in cells. Human lung fibroblasts (MRC-5) were infected with the HCMV strain AD169, and conditioned cell culture medium was collected and centrifuged. The pellets were treated with RNase-ONE, and the virions and DBs were purified with a potassium tartrate-glycerol gradient and dialysed. The virions and DBs were incubated with micrococcal nuclease, DNA and RNA were extracted and then analysed with TaqMan PCR assays, while the proteins were examined with Western blots. To assess the delivery of miRNAs to cells and their functionality, virions and DBs were irradiated with UV light. The purity of the virions and DBs was confirmed by typical morphology, the presence of the structural protein pp65 and the HCMV genome, the ability to infect MRC-5 cells and the absence of the host genome. RNA analysis revealed the presence of 14 HCMV-encoded miRNAs (UL22A-5p, US25-1-5p, UL22A-3p, US5-2-3p, UL112-3p, US25-2-3p, US25-2-5p, US33-3p, US5-1, UL36-5p, US4-5p, UL36-3p, UL70-5p and US25-1-3p), HCMV immediate-early mRNA and long non-coding RNA2.7, moreover, two host-encoded miRNAs (hsa-miR-218-5p and hsa-miR-21-5p) and beta-2-microglobulin RNA. UV-irradiated virions and DBs delivered viral miRNAs (US25-1-5p and UL112-3p) to the host cells, and miR-US25-1-5p was functional in a luciferase reporter assay. We conclude that virions and DBs carry miRNAs that are biologically functional and can be delivered to cells, which may affect cellular processes.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/metabolismo , MicroRNAs/metabolismo , RNA Viral/metabolismo , Vírion/metabolismo , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Interações Hospedeiro-Patógeno , Humanos , MicroRNAs/genética , RNA Viral/genética , Vírion/genética
5.
Arterioscler Thromb Vasc Biol ; 34(7): 1548-55, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24855063

RESUMO

OBJECTIVE: Collateral vessel formation can functionally compensate for obstructive vascular lesions in patients with atherosclerosis. Neovascularization processes are triggered by fluid shear stress, hypoxia, growth factors, chemokines, proteases, and inflammation, as well as reactive oxygen species, in response to ischemia. Polymerase δ-interacting protein 2 (Poldip2) is a multifunctional protein that regulates focal adhesion turnover and vascular smooth muscle cell migration and modifies extracellular matrix composition. We, therefore, tested the hypothesis that loss of Poldip2 impairs collateral formation. APPROACH AND RESULTS: The mouse hindlimb ischemia model has been used to understand mechanisms involved in postnatal blood vessel formation. Poldip2(+/-) mice were subjected to femoral artery excision, and functional and morphological analysis of blood vessel formation was performed after injury. Heterozygous deletion of Poldip2 decreased the blood flow recovery and spontaneous running activity at 21 days after injury. H2O2 production, as well as the activity of matrix metalloproteinases-2 and -9, was reduced in these animals compared with Poldip2(+/+) mice. Infiltration of macrophages in the peri-injury muscle was also decreased; however, macrophage phenotype was similar between genotypes. In addition, the formation of capillaries and arterioles was impaired, as was angiogenesis, in agreement with a decrease in proliferation observed in endothelial cells treated with small interfering RNA against Poldip2. Finally, regression of newly formed vessels and apoptosis was more pronounced in Poldip2(+/-) mice. CONCLUSIONS: Together, these results suggest that Poldip2 promotes ischemia-induced collateral vessel formation via multiple mechanisms that likely involve reactive oxygen species-dependent activation of matrix metalloproteinase activity, as well as enhanced vascular cell growth and survival.


Assuntos
Isquemia/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Proteínas Nucleares/metabolismo , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Circulação Colateral , Modelos Animais de Doenças , Heterozigoto , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Peróxido de Hidrogênio/metabolismo , Isquemia/genética , Isquemia/patologia , Isquemia/fisiopatologia , Macrófagos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Interferência de RNA , Recuperação de Função Fisiológica , Fluxo Sanguíneo Regional , Fatores de Tempo , Transfecção
6.
Small ; 9(23): 4017-26, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-23766267

RESUMO

Cell therapies offer exciting new opportunities for effectively treating many human diseases. However, delivery of therapeutic cells by intravenous injection, while convenient, relies on the relatively inefficient process of homing of cells to sites of injury. To address this limitation, a novel strategy has been developed to load cells with superparamagnetic iron oxide nanoparticles (SPIOs), and to attract them to specific sites within the body by applying an external magnetic field. The feasibility of this approach is demonstrated using human mesenchymal stem cells (hMSCs), which may have a significant potential for regenerative cell therapies due to their ease of isolation from autologous tissues, and their ability to differentiate into various lineages and modulate their paracrine activity in response to the microenvironment. The efficient loading of hMSCs with polyethylene glycol-coated SPIOs is achieved, and it is found that SPIOs are localized primarily in secondary lysosomes of hMSCs and are not toxic to the cells. Further, the key stem cell characteristics, including the immunophenotype of hMSCs and their ability to differentiate, are not altered by SPIO loading. Through both experimentation and mathematical modeling, it is shown that, under applied magnetic field gradients, SPIO-containing cells can be localized both in vitro and in vivo. The results suggest that, by loading SPIOs into hMSCs and applying appropriate magnetic field gradients, it is possible to target hMSCs to particular vascular networks.


Assuntos
Compostos Férricos/química , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Humanos , Nanopartículas de Magnetita/efeitos adversos , Nanopartículas/efeitos adversos
7.
Arterioscler Thromb Vasc Biol ; 32(6): 1383-91, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22492090

RESUMO

OBJECTIVE: Previous findings from our laboratory demonstrated that neovascularization was impaired in osteopontin (OPN) knockout animals. However, the mechanisms responsible for the regulation of OPN expression in the setting of ischemia remain undefined. Therefore, we sought to determine whether OPN is upregulated in response to ischemia and hypothesized that hydrogen peroxide (H(2)O(2)) is a critical component of the signaling mechanism by which OPN expression is upregulated in response to ischemia in vivo. METHODS AND RESULTS: To determine whether ischemic injury upregulates OPN, we used a murine model of hindlimb ischemia. Femoral artery ligation in C57BL/6 mice significantly increased OPN expression and H(2)O(2) production. Infusion of C57BL/6 mice with polyethylene glycol-catalase (10 000 U/kg per day) or the use of transgenic mice with smooth muscle cell-specific catalase overexpression blunted ischemia-induced OPN, suggesting ischemia-induced OPN expression is H(2)O(2)-dependent. Decreased H(2)O(2)-mediated OPN blunted reperfusion and collateral formation in vivo. In contrast, the overexpression of OPN using lentivirus restored neovascularization. CONCLUSIONS: Scavenging H(2)O(2) blocks ischemia-induced OPN expression, providing evidence that ischemia-induced OPN expression is H(2)O(2) dependent. Decreased OPN expression impaired neovascularization, whereas overexpression of OPN increased angiogenesis, supporting our hypothesis that OPN is a critical mediator of postischemic neovascularization and a potential novel therapeutic target for inducing new vessel growth.


Assuntos
Peróxido de Hidrogênio/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neovascularização Fisiológica , Osteopontina/metabolismo , Estresse Oxidativo , Animais , Antioxidantes/administração & dosagem , Catalase/administração & dosagem , Catalase/genética , Catalase/metabolismo , Células Cultivadas , Circulação Colateral , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Vetores Genéticos , Membro Posterior , Humanos , Infusões Intravenosas , Isquemia/diagnóstico por imagem , Isquemia/genética , Isquemia/fisiopatologia , Fluxometria por Laser-Doppler , Lentivirus/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Osteopontina/genética , Estresse Oxidativo/efeitos dos fármacos , Polietilenoglicóis/administração & dosagem , Fluxo Sanguíneo Regional , Transdução de Sinais , Fatores de Tempo , Regulação para Cima , Microtomografia por Raio-X
8.
Proc Natl Acad Sci U S A ; 107(8): 3323-8, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20080569

RESUMO

Therapeutic vascularization remains a significant challenge in regenerative medicine applications. Whether the goal is to induce vascular growth in ischemic tissue or scale up tissue-engineered constructs, the ability to induce the growth of patent, stable vasculature is a critical obstacle. We engineered polyethylene glycol-based bioartificial hydrogel matrices presenting protease-degradable sites, cell-adhesion motifs, and growth factors to induce the growth of vasculature in vivo. Compared to injection of soluble VEGF, these matrices delivered sustained in vivo levels of VEGF over 2 weeks as the matrix degraded. When implanted subcutaneously in rats, degradable constructs containing VEGF and arginine-glycine-aspartic acid tripeptide induced a significant number of vessels to grow into the implant at 2 weeks with increasing vessel density at 4 weeks. The mechanism of enhanced vascularization is likely cell-demanded release of VEGF, as the hydrogels may degrade substantially within 2 weeks. In a mouse model of hind-limb ischemia, delivery of these matrices resulted in significantly increased rate of reperfusion. These results support the application of engineered bioartificial matrices to promote vascularization for directed regenerative therapies.


Assuntos
Neovascularização Fisiológica/efeitos dos fármacos , Veículos Farmacêuticos/química , Regeneração/efeitos dos fármacos , Medicina Regenerativa/métodos , Animais , Modelos Animais de Doenças , Extremidades/irrigação sanguínea , Hidrogéis/administração & dosagem , Hidrogéis/química , Isquemia/terapia , Masculino , Camundongos , Camundongos Endogâmicos , Oligopeptídeos/administração & dosagem , Oligopeptídeos/química , Veículos Farmacêuticos/administração & dosagem , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Ratos , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/química
9.
Am J Physiol Regul Integr Comp Physiol ; 303(1): R48-56, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22573106

RESUMO

The formation of vascular networks during embryogenesis and early stages of development encompasses complex and tightly regulated growth of blood vessels, followed by maturation of some vessels, and spatially controlled disconnection and pruning of others. The adult vasculature, while more quiescent, is also capable of adapting to changing physiological conditions by remodeling blood vessels. Numerous studies have focused on understanding key factors that drive vessel growth in the adult in response to ischemic injury. However, little is known about the extent of vessel rarefaction and its potential contribution to the final outcome of vascular recovery. We addressed this topic by characterizing the endogenous phases of vascular repair in a mouse model of hindlimb ischemia. We showed that this process is biphasic. It encompasses an initial rapid phase of vessel growth, followed by a later phase of vessel rarefaction. In healthy mice, this process resulted in partial recovery of perfusion and completely restored the ability of mice to run voluntarily. Given that the ability to revascularize can be compromised by a cardiovascular risk factor such as diabetes, we also examined vascular repair in diabetic mice. We found that paradoxically both the initial growth and subsequent regression of collateral vessels were more pronounced in the setting of diabetes and resulted in impaired recovery of perfusion and impaired functional status. In conclusion, our findings demonstrate that the formation of functional collateral vessels in the hindlimb requires vessel growth and subsequent vessel rarefaction. In the setting of diabetes, the physiological defect was not in the initial formation of vessels but rather in the inability to sustain newly formed vessels.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Membro Posterior/irrigação sanguínea , Isquemia/fisiopatologia , Neovascularização Fisiológica/fisiologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Modelos Animais de Doenças , Fluxometria por Laser-Doppler , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Fluxo Sanguíneo Regional/fisiologia , Estreptozocina/efeitos adversos
10.
Arterioscler Thromb Vasc Biol ; 31(10): 2203-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21799178

RESUMO

OBJECTIVE: Myeloid lineage cells (MLCs) such as macrophages are known to play a key role in postischemic neovascularization. However, the role of MLC-derived reactive oxygen species in this process and their specific chemical identity remain unknown. METHODS AND RESULTS: Transgenic mice with MLC-specific overexpression of catalase (Tg(Cat-MLC) mice) were created on a C57BL/6 background. Macrophage catalase activity was increased 3.4-fold compared with wild-type mice. After femoral artery ligation, laser Doppler perfusion imaging revealed impaired perfusion recovery in Tg(Cat-MLC) mice. This was associated with fewer collateral vessels, as assessed by microcomputed tomography angiography, and decreased capillary density. Impaired functional recovery of the ischemic limb was also evidenced by a 50% reduction in spontaneous running activity. The deficient neovascularization was associated with a blunted inflammatory response, characterized by decreased macrophage infiltration of ischemic tissues, and lower mRNA levels of inflammatory markers, such as tumor necrosis factor-α, osteopontin, and matrix mettaloproteinase-9. In vitro macrophage migration was impaired in Tg(Cat-MLC) mice, suggesting a role for H(2)O(2) in regulating the ability of macrophages to infiltrate ischemic tissues. CONCLUSIONS: MLC-derived H(2)O(2) plays a key role in promoting neovascularization in response to ischemia and is a necessary factor for the development of ischemia-induced inflammation.


Assuntos
Capilares/enzimologia , Catalase/biossíntese , Peróxido de Hidrogênio/metabolismo , Isquemia/enzimologia , Músculo Esquelético/irrigação sanguínea , Células Mieloides/enzimologia , Neovascularização Fisiológica , Animais , Capilares/diagnóstico por imagem , Capilares/fisiopatologia , Catalase/genética , Movimento Celular , Células Cultivadas , Circulação Colateral , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Artéria Femoral/cirurgia , Genótipo , Membro Posterior , Humanos , Mediadores da Inflamação/metabolismo , Isquemia/genética , Isquemia/fisiopatologia , Fluxometria por Laser-Doppler , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora , Neovascularização Fisiológica/genética , Fenótipo , RNA Mensageiro/metabolismo , Fluxo Sanguíneo Regional , Células-Tronco/metabolismo , Fatores de Tempo , Ultrassonografia , Regulação para Cima , Microtomografia por Raio-X
11.
Cells ; 10(11)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34831300

RESUMO

Human cytomegalovirus (HCMV) infection is an important cause of morbidity and mortality in immunocompromised patients and a major etiological factor for congenital birth defects in newborns. Ganciclovir and its pro-drug valganciclovir are the preferred drugs in use today for prophylaxis and treatment of viremic patients. Due to long treatment times, patients are at risk for developing viral resistance to ganciclovir and to other drugs with a similar mechanism of action. We earlier found that the endothelin receptor B (ETBR) is upregulated during HCMV infection and that it plays an important role in the life cycle of this virus. Here, we tested the hypothesis that ETBR blockade could be used in the treatment of HCMV infection. As HCMV infection is specific to humans, we tested our hypothesis in human cell types that are relevant for HCMV pathogenesis; i.e., endothelial cells, epithelial cells and fibroblasts. We infected these cells with HCMV and treated them with the ETBR specific antagonist BQ788 or ETR antagonists that are approved by the FDA for treatment of pulmonary hypertension; macitentan, its metabolite ACT-132577, bosentan and ambrisentan, and as an anti-viral control, we used ganciclovir or letermovir. At concentrations expected to be relevant in vivo, macitentan, ACT-132577 and BQ788 effectively inhibited productive infection of HCMV. Of importance, macitentan also inhibited productive infection of a ganciclovir-resistant HCMV isolate. Our results suggest that binding or signaling through ETBR is crucial for viral replication, and that selected ETBR blockers inhibit HCMV infection.


Assuntos
Citomegalovirus/fisiologia , Antagonistas dos Receptores de Endotelina/farmacologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Linhagem Celular , Citomegalovirus/efeitos dos fármacos , Infecções por Citomegalovirus/virologia , Antagonistas dos Receptores de Endotelina/química , Ganciclovir/farmacologia , Humanos , Concentração Inibidora 50 , Metaboloma , Oligopeptídeos , Piperidinas , Pirimidinas/química , Sulfonamidas/química , Vírion/efeitos dos fármacos , Vírion/metabolismo , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
12.
Cell Chem Biol ; 28(12): 1693-1702.e6, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34192523

RESUMO

Ganciclovir (GCV) is the first-line therapy against human cytomegalovirus (HCMV), a widespread infection that is particularly dangerous for immunodeficient individuals. Closely resembling deoxyguanosine triphosphate, the tri-phosphorylated metabolite of GCV (GCV-TP) is preferentially incorporated by the viral DNA polymerase, thereby terminating chain extension and, eventually, viral replication. However, the treatment outcome of GCV varies greatly among individuals, therefore warranting better understanding of its metabolism. Here we show that NUDT15, a Nudix hydrolase known to metabolize thiopurine triphosphates, can similarly hydrolyze GCV-TP through biochemical studies and co-crystallization of the NUDT15/GCV-TP complex. More critically, GCV efficacy was potentiated in HCMV-infected cells following NUDT15 depletion by RNAi or inhibition by an in-house-developed, nanomolar NUDT15 inhibitor, TH8321, suggesting that pharmacological targeting of NUDT15 is a possible avenue to improve existing anti-HCMV regimens. Collectively, the data further implicate NUDT15 as a broad-spectrum metabolic regulator of nucleoside analog therapeutics, such as thiopurines and GCV.


Assuntos
Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Ganciclovir/farmacologia , Pirofosfatases/metabolismo , Antivirais/química , Linhagem Celular Tumoral , Feminino , Ganciclovir/química , Humanos , Hidrólise , Testes de Sensibilidade Microbiana , Proteínas Recombinantes/metabolismo
13.
Oncol Rep ; 41(5): 2927-2936, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30896862

RESUMO

Glioblastoma (GBM) is the most aggressive form of brain tumor in adults, with a devastating outcome. Emerging evidence shows that human cytomegalovirus (HCMV) proteins and nucleic acids are present in GBM tissues. DNA methylation is important for the initiation and progression of cancer and is an established host response against invading nucleic acids. The expression and localization of DNA methyltransferase 1 (DNMT­1) was assessed, and the effects of DNA methylation inhibitor 5­azacytidine (5AZA) were analyzed in the context of the viral replication, proliferation and invasion capacities of HCMV­infected GBM U343MG cells. In addition, the expression of various HCMV proteins and DNMT­1 was examined in GBM tissue specimens obtained from five patients. DNMT­1 was localized in the nucleus of cells expressing HCMV­immediate early, whereas in cells expressing HCMV­glycoprotein gB (gB), extranuclear/cytoplasmic localization was observed. This was also observed in vitro in U343MG cells. In addition, DNMT­1 was localized to the extranuclear/cytoplasmic space of cells lining blood vessel walls within the GBM tumors. Treatment of infected U343MG cells with 5AZA did not affect viral replication, but reduced cell invasion and proliferation (P=0.05 and P<0.0001, respectively). However, 5AZA treatment of uninfected cells did not affect cell invasion (P=0.09), but proliferation was significantly reduced (P<0.0001). These findings may be of importance in further investigations aimed at using DNA methylation and viral inhibitors in GBM therapy.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Glioblastoma/tratamento farmacológico , Adulto , Idoso , Antimetabólitos Antineoplásicos/uso terapêutico , Azacitidina/uso terapêutico , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/virologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/patogenicidade , Citomegalovirus/fisiologia , Citoplasma/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Metilação de DNA/efeitos dos fármacos , Progressão da Doença , Feminino , Glioblastoma/patologia , Glioblastoma/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Proteínas do Envelope Viral/metabolismo , Replicação Viral/efeitos dos fármacos
14.
Biotechnol Bioeng ; 99(5): 1205-15, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17969146

RESUMO

Using a panel of amphotropic murine leukemia virus packaging cell lines that differed only in their levels of envelope protein (gp70) expression, we examined the relationship between transduction and the number of envelope proteins per virus. We generated virus stocks that contained different levels of virus-associated envelope proteins, purified them from gp70 that was not associated with the viruses, quantified their titers, and measured the efficiency with which they transduced NIH 3T3, TE671, and HeLa cells. As expected, titers increased monotonically with viral envelope protein number. Titers are measured using highly dilute virus, however, and are often not predictive of gene transfer when high doses of virus are used, as is done in gene therapy protocols. Interestingly, when we used high doses of virus, we observed significantly different trends: gene transfer increased, reached a maximum, and then declined sharply as the number of envelope proteins per virus increased. The highest levels of gene transfer occurred when cells were transduced with a moderate dose of virus that contained low levels of envelope protein. Our results indicate that transduction is inhibited when viruses that contain large numbers of envelope proteins are used. This is most likely because each virus, when it binds to a cell, delivers a large payload of envelope proteins that occupy or inactivate multiple virus receptors, reducing or eliminating the susceptibility of the cell to being transduced by additional viruses. The implications of our findings for the design of improved retroviral vectors for human gene therapy are discussed.


Assuntos
Vírus da Leucemia Murina/genética , Transdução Genética , Proteínas do Envelope Viral/metabolismo , Animais , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Vírus da Leucemia Murina/metabolismo , Camundongos , Células NIH 3T3 , beta-Galactosidase/metabolismo
16.
Biotechnol Prog ; 23(2): 480-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17373825

RESUMO

We have previously shown that complexes of Polybrene (PB), chondroitin sulfate C (CSC), and retrovirus transduce cells more efficiently than uncomplexed virus because the complexes are large and sediment, reaching the cells more rapidly than by diffusion. Transduction reaches a peak at equal weight concentrations of CSC and PB and declines when the dose of PB is higher or lower than CSC. We hypothesized that the nonlinear dose response of transduction was a complex function of the molecular characteristics of the polymers, cell viability, and the number of viruses incorporated into the complexes. To test this hypothesis, we formed complexes using an amphotropic retrovirus and several pairs of oppositely charged polymers and used them to transduce murine fibroblasts. We examined the effect of the type and concentration of polymers used on cell viability, the size and charge of the complexes, the number of viruses incorporated into the complexes, and virus binding and transduction. Transduction was enhanced (2.5- to 5.5-fold) regardless of which polymers were used and was maximized when the number of positive charge groups was in slight excess (15-28%) of the number of negative charge groups. Higher doses of cationic polymer were cytotoxic, whereas complexes formed with lower doses were smaller, contained fewer viruses, and sedimented more slowly. These results show that the dose response of transduction by virus-polymer complexes is nonlinear because excess cationic polymer is cytotoxic, whereas excess anionic polymer reduces the number of active viruses that are delivered to the cells.


Assuntos
Portadores de Fármacos/química , Polímeros/química , Retroviridae/química , Retroviridae/genética , Transdução Genética/métodos , Animais , Relação Dose-Resposta a Droga , Substâncias Macromoleculares/química , Camundongos , Células NIH 3T3 , Tamanho da Partícula
17.
Elife ; 62017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28639941

RESUMO

Staff from the Mayo Clinic in the US and the Karolinska Institute in Sweden describe a joint transatlantic course intended to broaden the horizons of the next generation of researchers in the field of regenerative medicine.


Assuntos
Pesquisa Biomédica/métodos , Educação/métodos , Cooperação Internacional , Estudantes , Criatividade , Comportamento Social , Suécia
18.
J Biotechnol ; 125(4): 529-39, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16647154

RESUMO

We have previously shown that the combined addition of Polybrene (PB) and chondroitin sulfate C (CSC) to retrovirus stocks leads to the formation of retrovirus-polymer complexes (i.e., flocs) that rapidly sediment onto cells, increases the efficiency of gene transfer, and can be used to rapidly concentrate and purify retrovirus stocks. The viruses remain associated with the polyelectrolyte complexes, however, which may complicate their use in downstream applications. In this study we determined if retrovirus could be flocculated using only one polymer (PB). We found that when retrovirus stocks were incubated with 320 microg/ml of PB, more than 70% of the viruses, and fewer than 0.3% of all other proteins, were pelleted by low-speed centrifugation. In contrast to retrovirus complexes formed with two polymers, retrovirus flocculated with PB disaggregated when they were resuspended in fresh medium. We conclude that flocculation of retroviruses with a single cationic polymer (PB) is a useful method for rapidly concentrating and purifying retroviruses, and may prove particularly useful when it is desirable to generate purified virus that is not part of a polymer complex.


Assuntos
Floculação , Brometo de Hexadimetrina/farmacologia , Retroviridae/efeitos dos fármacos , Retroviridae/isolamento & purificação , Animais , Sobrevivência Celular/efeitos dos fármacos , Genes Reporter , Terapia Genética/métodos , Vetores Genéticos/metabolismo , Brometo de Hexadimetrina/toxicidade , Camundongos , Células NIH 3T3 , Transdução Genética/métodos , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
19.
J Tissue Eng Regen Med ; 10(3): 222-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23281223

RESUMO

Stem cell-based therapies hold great promise as a clinically viable approach for vascular regeneration. Preclinical studies have been very encouraging and early clinical trials have suggested favourable outcomes. However, significant challenges remain in terms of optimizing cell retention and maintenance of the paracrine effects of implanted cells. To address these issues, we have proposed the use of a cellular encapsulation approach to enhance vascular regeneration. We contained human mesenchymal stem cells (hMSCs) in biocompatible alginate microcapsules for therapeutic treatment in the setting of murine hindlimb ischaemia. This approach supported the paracrine pro-angiogenic activity of hMSCs, prevented incorporation of hMSCs into the host tissue and markedly enhanced their therapeutic effect. While injection of non-encapsulated hMSCs resulted in a 22 ± 10% increase in vascular density and no increase in perfusion, treatment with encapsulated hMSCs resulted in a 70 ± 8% increase in vascular density and 21 ± 7% increase in perfusion. The described cellular encapsulation strategy may help to better define the mechanisms responsible for the beneficial effects of cell-based therapies and provide a therapeutic strategy for inducing vascular growth in the adult. As hMSCs are relatively easy to isolate from patients, and alginate is biocompatible and already used in clinical applications, therapeutic cell encapsulation for vascular repair represents a highly translatable platform for cell-based therapy in humans.


Assuntos
Alginatos/farmacologia , Membro Posterior/irrigação sanguínea , Isquemia/terapia , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Animais , Cápsulas , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Membro Posterior/efeitos dos fármacos , Membro Posterior/patologia , Humanos , Isquemia/patologia , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Nus , Permeabilidade , Cicatrização/efeitos dos fármacos
20.
Oncotarget ; 7(48): 79572-79583, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27788487

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in humans and is characterized with poor outcome. In this study, we investigated components of prolactin (Prl) system in cell models of GBM and in histological tissue sections obtained from GBM patients. Expression of Prolactin receptor (PrlR) was detected at high levels in U251-MG, at low levels in U87-MG and barely detectable in U373 cell lines and in 66% of brain tumor tissues from 32 GBM patients by immunohistochemical technique. In addition, stimulation of U251-MG and U87-MG cells but not U373 with Prl resulted in increased STAT5 phosphorylation and only in U251-MG cells with increased cellular invasion. Furthermore, STAT5 phosphorylation and cellular invasion induced in Prl stimulated cells were significantly reduced by using a Prl receptor antagonist that consists of Prl with four amino acid replacements. We conclude that Prl receptor is expressed at different levels in the majority of GBM tumors and that blocking of PrlR in U251-MG cells significantly reduce cellular invasion.


Assuntos
Neoplasias Encefálicas/metabolismo , Movimento Celular/efeitos dos fármacos , Glioblastoma/metabolismo , Prolactina/farmacologia , Receptores da Prolactina/agonistas , Fator de Transcrição STAT5/metabolismo , Antineoplásicos Hormonais/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Antagonistas de Hormônios/farmacologia , Humanos , Invasividade Neoplásica , Fosforilação , Receptores da Prolactina/antagonistas & inibidores , Receptores da Prolactina/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA