Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(8): 3282-3290, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057989

RESUMO

Nanostructured metals are a promising class of radiation-tolerant materials. A large volume fraction of grain boundaries (GBs) can provide plenty of sinks for radiation damage, and understanding the underlying healing mechanisms is key to developing more effective radiation tolerant materials. Here, we observe radiation damage absorption by stress-assisted GB migration in ultrafine-grained Au thin films using a quantitative in situ transmission electron microscopy nanomechanical testing technique. We show that the GB migration rate is significantly higher in the unirradiated specimens. This behavior is attributed to the presence of smaller grains in the unirradiated specimens that are nearly absent in the irradiated specimens. Our experimental results also suggest that the GB mobility is decreased as a result of irradiation. This work implies that the deleterious effects of irradiation can be reduced by an evolving network of migrating GBs under stress.

2.
Small ; 19(29): e2300098, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026674

RESUMO

Ultrathin MoS2 has shown remarkable characteristics at the atomic scale with an immutable disorder to weak external stimuli. Ion beam modification unlocks the potential to selectively tune the size, concentration, and morphology of defects produced at the site of impact in 2D materials. Combining experiments, first-principles calculations, atomistic simulations, and transfer learning, it is shown that irradiation-induced defects can induce a rotation-dependent moiré pattern in vertically stacked homobilayers of MoS2 by deforming the atomically thin material and exciting surface acoustic waves (SAWs). Additionally, the direct correlation between stress and lattice disorder by probing the intrinsic defects and atomic environments are demonstrated. The method introduced in this paper sheds light on how engineering defects in the lattice can be used to tailor the angular mismatch in van der Waals (vdW) solids.

3.
Vascular ; : 17085381231162121, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36880298

RESUMO

OBJECTIVE: Thoracic Endovascular Aortic Repair (TEVAR) is well established in humans. Despite widespread use, additional research questions related to thoracic aortic stenting and endovascular innovation require large animal models. Translating human TEVAR devices and techniques into animal models, however, is a challenge even for experienced endovascular surgeons looking to develop a large animal TEVAR model.This article describes swine-specific strategies to deploy human TEVAR stent grafts, delineate how to select, size, prepare, and re-use human stents and deployment systems in swine, and how to translate human imaging modalities to large animal TEVAR. METHODS: We describe a selection of related TEVAR models and techniques in Yorkshire swine to support scientific inquiry. This includes an animal husbandry and pre-operative preparation and planning program. All imaged specimens in this paper are castrated male Yorkshire swine in the 60-80 kg range and underwent TEVAR with the Medtronic Navion stent and deployment system. RESULTS: To study human aortic stent grafts in swine, the animals generally must be at least 50 kgs to guarantee a 2 cm internal aortic diameter at the left subclavian, and for the iliac arteries to accommodate the human deployment system. Swine will have longer torsos and shorter iliofemoral segments than a human of the same weight which can make human deployment systems too short to reach the left subclavian from the femoral arteries in larger animals. We provide techniques to overcome this, including open iliac access or upside-down carotid TEVAR, which may be particularly useful if the scientific data would be confounded by iliofemoral access.Unlike humans that present clinically with axial imaging, swine will generally not have preoperative imaging, and many translational research laboratories do not have access to inexpensive preoperative CT, or any intraoperative CT scanning, which we are fortunate to have. We describe, therefore, several strategies for imaging in this setting including TEVAR via C-arm fluoroscopy and with or without in-laboratory CT scanning. Due to the low-resource setting of most large animal laboratories, as compared to a human hybrid room, we also describe several techniques to reduce cost and reuse materials, including the stent grafts, which at the end of non-survival experiments can be recovered during necropsy, cleaned, reinserted into the deployment device and reused on additional animals. CONCLUSIONS: This article describes a collection of related techniques and tips to translate human TEVAR imaging, sizing/selection, deployment, and anatomy to swine research. Using this framework alone, an experienced human vascular or endovascular surgeon may develop a complete aortic stenting animal model with strategies for scientific data acquisition.

4.
J Surg Res ; 278: 64-69, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35594616

RESUMO

INTRODUCTION: Perfusion of the brain is critical, but this can be compromised due to focal space occupying lesions (SOL). SOLs can raise intracranial pressure (ICP), resulting in reduced cerebral blood flow (CBF). Most gyrencephalic models of brain injury focus on parenchymal injury, with few models of acutely elevated ICP. We hypothesized that we could employ a SOL technique to develop a titratable ICP model and sought to quantitate the resulting decrease in brain perfusion. METHODS: Six swine were anesthetized and instrumented. A Fogarty balloon catheter was inserted intracranially. Blood CO2 partial pressure was maintained between 35 and 45 mmHg. The Fogarty balloon was infused with normal saline at 1 mL/min to ICP targets of 10, 20, 30, and 40 mmHg. CBF (mL/100 g/min) were assessed at each ICP level using computed tomography perfusion (CTP). Data are presented as the mean ± standard deviation with all pressures measured in mmHg. CBF values were compared between baseline and each ICP level using analysis of variance. RESULTS: Baseline ICP was 5 ± 2 and systolic blood pressure was 106 ± 7. Balloon volumes (mL) required to achieve each incremental ICP level were 2.4 ± 0.5, 4.9 ± 1.7, 7.6 ± 1.6, and 9.9 ± 1.7. CBF decreased with each raised ICP level, with CBF being significantly less than baseline at ICP values of 30 (56.1 ± 34.7 versus 20.6 ± 11.0, P < 0.05) and 40 (56.1 ± 34.7 versus 6.5 ± 10.6, P < 0.05). CONCLUSIONS: An intracranial balloon catheter can be used to increase ICP, delivering a proportionate reduction in CBF. This model can be used in the future studies to examine adjuncts that manipulate intracranial pressure and their effect on brain perfusion.


Assuntos
Lesões Encefálicas , Pressão Intracraniana , Animais , Pressão Sanguínea , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Pressão Intracraniana/fisiologia , Perfusão , Suínos
5.
J Insect Sci ; 22(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35172009

RESUMO

Eastern populations of the North American regal fritillary, Argynnis idalia Drury (1773), have been largely extirpated over the past half century. Here we report on the last remaining population of eastern regal fritillaries, located within a military installation in south-central Pennsylvania. Samples were obtained from field specimens during two years of annual monitoring, and from females collected for captive rearing over a five year period. Nuclear microsatellite and mitochondrial sequence data do not suggest subdivision within this population, but excess nuclear homozygosity indicates negative impacts on genetic diversity likely due to small population size and potential inbreeding effects. Molecular assays did not detect Wolbachia endosymbionts in field specimens of regal fritillary, but sympatric Argynnis sister species showed high prevalence of Wolbachia infected individuals. Our results inform ongoing conservation and reintroduction projects, designed to protect the last remaining regal fritillary population from extirpation in the eastern United States.


Assuntos
Borboletas , Wolbachia , Animais , Borboletas/genética , Borboletas/microbiologia , Feminino , Variação Genética , Pennsylvania , Prevalência , Estados Unidos , Wolbachia/genética
6.
Cerebellum ; 20(2): 266-281, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33048308

RESUMO

We review advances in understanding Purkinje cell (PC) complex spike (CS) physiology that suggest increased CS synchrony underlies syndromic essential tremor (ET). We searched PubMed for papers describing factors that affect CS synchrony or cerebellar circuits potentially related to tremor. Inferior olivary (IO) neurons are electrically coupled, with the degree of coupling controlled by excitatory and GABAergic inputs. Clusters of coupled IO neurons synchronize CSs within parasagittal bands via climbing fibers (Cfs). When motor cortex is stimulated in rats at varying frequencies, whisker movement occurs at ~10 Hz, correlated with synchronous CSs, indicating that the IO/CS oscillatory rhythm gates movement frequency. Intra-IO injection of the GABAA receptor antagonist picrotoxin increases CS synchrony, increases whisker movement amplitude, and induces tremor. Harmaline and 5-HT2a receptor activation also increase IO coupling and CS synchrony and induce tremor. The hotfoot17 mouse displays features found in ET brains, including cerebellar GluRδ2 deficiency and abnormal PC Cf innervation, with IO- and PC-dependent cerebellar oscillations and tremor likely due to enhanced CS synchrony. Heightened coupling within the IO oscillator leads, through its dynamic control of CS synchrony, to increased movement amplitude and, when sufficiently intense, action tremor. Increased CS synchrony secondary to aberrant Cf innervation of multiple PCs likely also underlies hotfoot17 tremor. Deep cerebellar nucleus (DCN) hypersynchrony may occur secondary to increased CS synchrony but might also occur from PC axonal terminal sprouting during partial PC loss. Through these combined mechanisms, increased CS/DCN synchrony may plausibly underlie syndromic ET.


Assuntos
Núcleos Cerebelares/fisiopatologia , Tremor Essencial/fisiopatologia , Células de Purkinje/fisiologia , Potenciais de Ação/fisiologia , Animais , Humanos
7.
PLoS Comput Biol ; 16(7): e1008075, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32730255

RESUMO

We previously proposed, on theoretical grounds, that the cerebellum must regulate the dimensionality of its neuronal activity during motor learning and control to cope with the low firing frequency of inferior olive neurons, which form one of two major inputs to the cerebellar cortex. Such dimensionality regulation is possible via modulation of electrical coupling through the gap junctions between inferior olive neurons by inhibitory GABAergic synapses. In addition, we previously showed in simulations that intermediate coupling strengths induce chaotic firing of inferior olive neurons and increase their information carrying capacity. However, there is no in vivo experimental data supporting these two theoretical predictions. Here, we computed the levels of synchrony, dimensionality, and chaos of the inferior olive code by analyzing in vivo recordings of Purkinje cell complex spike activity in three different coupling conditions: carbenoxolone (gap junctions blocker), control, and picrotoxin (GABA-A receptor antagonist). To examine the effect of electrical coupling on dimensionality and chaotic dynamics, we first determined the physiological range of effective coupling strengths between inferior olive neurons in the three conditions using a combination of a biophysical network model of the inferior olive and a novel Bayesian model averaging approach. We found that effective coupling co-varied with synchrony and was inversely related to the dimensionality of inferior olive firing dynamics, as measured via a principal component analysis of the spike trains in each condition. Furthermore, for both the model and the data, we found an inverted U-shaped relationship between coupling strengths and complexity entropy, a measure of chaos for spiking neural data. These results are consistent with our hypothesis according to which electrical coupling regulates the dimensionality and the complexity in the inferior olive neurons in order to optimize both motor learning and control of high dimensional motor systems by the cerebellum.


Assuntos
Neurônios/fisiologia , Núcleo Olivar/fisiologia , Potenciais de Ação , Animais , Teorema de Bayes , Cerebelo/fisiologia , Simulação por Computador , Feminino , Junções Comunicantes/fisiologia , Modelos Neurológicos , Modelos Estatísticos , Dinâmica não Linear , Picrotoxina/farmacologia , Probabilidade , Células de Purkinje/fisiologia , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia , Ácido gama-Aminobutírico/fisiologia
8.
J Chem Inf Model ; 61(11): 5658-5672, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34748329

RESUMO

Zinc metalloproteins are ubiquitous, with protein zinc centers of structural and functional importance, involved in interactions with ligands and substrates and often of pharmacological interest. Biomolecular simulations are increasingly prominent in investigations of protein structure, dynamics, ligand interactions, and catalysis, but zinc poses a particular challenge, in part because of its versatile, flexible coordination. A computational workflow generating reliable models of ligand complexes of biological zinc centers would find broad application. Here, we evaluate the ability of alternative treatments, using (nonbonded) molecular mechanics (MM) and quantum mechanics/molecular mechanics (QM/MM) at semiempirical (DFTB3) and density functional theory (DFT) levels of theory, to describe the zinc centers of ligand complexes of six metalloenzyme systems differing in coordination geometries, zinc stoichiometries (mono- and dinuclear), and the nature of interacting groups (specifically the presence of zinc-sulfur interactions). MM molecular dynamics (MD) simulations can overfavor octahedral geometries, introducing additional water molecules to the zinc coordination shell, but this can be rectified by subsequent semiempirical (DFTB3) QM/MM MD simulations. B3LYP/MM geometry optimization further improved the accuracy of the description of coordination distances, with the overall effectiveness of the approach depending upon factors, including the presence of zinc-sulfur interactions that are less well described by semiempirical methods. We describe a workflow comprising QM/MM MD using DFTB3 followed by QM/MM geometry optimization using DFT (e.g., B3LYP) that well describes our set of zinc metalloenzyme complexes and is likely to be suitable for creating accurate models of zinc protein complexes when structural information is more limited.


Assuntos
Metaloproteínas , Ligantes , Teoria Quântica , Fluxo de Trabalho , Zinco
9.
Anesth Analg ; 133(3): 747-754, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264117

RESUMO

BACKGROUND: Recently, a very low incidence of 3 per 10,000 and a mortality of 30% were reported for pediatric perioperative cardiac arrest (POCA). However, high-risk patients, namely children already anesthetized on the intensive care unit (ICU), were excluded. This study investigates the incidence and mortality of POCA in children in whom anesthesia was induced in the ICU or in the operating room using real-world data. In addition, different classifications of POCA were compared with respect to outcome relevance. METHODS: This is a retrospective observational study conducted at a German level 1 perinatal center and tertiary care hospital between 2008 and 2018. Children ≤15 years who underwent an anesthetic procedure and suffered from POCA (defined as any condition requiring chest compressions and/or defibrillation) from the beginning of care provided by an anesthesiologist to 60 minutes after anesthesia or sedation were included. Primary end points were incidence and mortality of POCA in children with anesthesia induced in the ICU versus in the operating room. Secondary end points included incidences and outcomes with respect to the pathophysiological cause (respiratory versus circulatory associated). RESULTS: There were 18 POCA during 22,650 anesthetic procedures (incidence 7.9 per 10,000; 95% confidence interval [CI], 4.7-12.5). Thirty-day mortality was 3.5 per 10,000 (95% CI, 1.5-6.9). Incidence and mortality were higher in children in whom anesthesia was induced in the ICU versus in the operating room (incidence: 131.6; 95% CI, 57 to 257.6 versus 4.5; 95% CI, 2.2-8.3; P < .001; and mortality: 82.2; 95% CI, 26.7-190.8 versus 1.4; 95% CI, 0.3-3.9; P < .001). Mortality in circulatory-induced POCA (n = 8; 44%) was 100%, in respiratory-induced POCA (n = 9; 50%) 0% (P < .001). CONCLUSIONS: Children with anesthesia induction in the ICU represent a high-risk population for POCA and POCA-associated mortality. POCA classification should be based on the individual cause (respiratory versus circulatory) rather than on the perioperative phase or the responsible specialty.


Assuntos
Anestesia/efeitos adversos , Parada Cardíaca/epidemiologia , Fatores Etários , Anestesia/mortalidade , Pré-Escolar , Cardioversão Elétrica , Feminino , Alemanha/epidemiologia , Parada Cardíaca/diagnóstico , Parada Cardíaca/mortalidade , Parada Cardíaca/terapia , Massagem Cardíaca , Mortalidade Hospitalar , Humanos , Incidência , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Pediátrica , Masculino , Salas Cirúrgicas , Período Perioperatório , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
10.
J Biol Chem ; 294(13): 4828-4842, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30670586

RESUMO

Because of their special organization, multifunctional enzymes play crucial roles in improving the performance of metabolic pathways. For example, the bacterium Prevotella nigrescens contains a distinctive bifunctional protein comprising a 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS), catalyzing the first reaction of the biosynthetic pathway of aromatic amino acids, and a chorismate mutase (CM), functioning at a branch of this pathway leading to the synthesis of tyrosine and phenylalanine. In this study, we characterized this P. nigrescens enzyme and found that its two catalytic activities exhibit substantial hetero-interdependence and that the separation of its two distinct catalytic domains results in a dramatic loss of both DAH7PS and CM activities. The protein displayed a unique dimeric assembly, with dimerization solely via the CM domain. Small angle X-ray scattering (SAXS)-based structural analysis of this protein indicated a DAH7PS-CM hetero-interaction between the DAH7PS and CM domains, unlike the homo-association between DAH7PS domains normally observed for other DAH7PS proteins. This hetero-interaction provides a structural basis for the functional interdependence between the two domains observed here. Moreover, we observed that DAH7PS is allosterically inhibited by prephenate, the product of the CM-catalyzed reaction. This allostery was accompanied by a striking conformational change as observed by SAXS, implying that altering the hetero-domain interaction underpins the allosteric inhibition. We conclude that for this C-terminal CM-linked DAH7PS, catalytic function and allosteric regulation appear to be delivered by a common mechanism, revealing a distinct and efficient evolutionary strategy to utilize the functional advantages of a bifunctional enzyme.


Assuntos
Alquil e Aril Transferases/química , Aminoácidos Aromáticos/biossíntese , Proteínas de Bactérias/química , Prevotella nigrescens/enzimologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Regulação Alostérica , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Prevotella nigrescens/genética , Domínios Proteicos , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
Nat Rev Neurosci ; 16(2): 79-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25601779

RESUMO

The adult mammalian cerebellar cortex is generally assumed to have a uniform cytoarchitecture. Differences in cerebellar function are thought to arise primarily through distinct patterns of input and output connectivity rather than as a result of variations in cortical microcircuitry. However, evidence from anatomical, physiological and genetic studies is increasingly challenging this orthodoxy, and there are now various lines of evidence indicating that the cerebellar cortex is not uniform. Here, we develop the hypothesis that regional differences in properties of cerebellar cortical microcircuits lead to important differences in information processing.


Assuntos
Córtex Cerebelar/fisiologia , Rede Nervosa/fisiologia , Células de Purkinje/fisiologia , Sinapses/fisiologia , Animais , Humanos
12.
Cerebellum ; 18(6): 1036-1063, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31124049

RESUMO

Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.


Assuntos
Encéfalo/diagnóstico por imagem , Consenso , Prova Pericial , Modelos Animais , Rede Nervosa/diagnóstico por imagem , Tremor/diagnóstico por imagem , Animais , Encéfalo/fisiopatologia , Drosophila , Prova Pericial/normas , Haplorrinos , Camundongos , Rede Nervosa/fisiopatologia , Ratos , Suínos , Tremor/fisiopatologia
15.
J Physiol ; 595(1): 283-299, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27265808

RESUMO

KEY POINTS: Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes. Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets. The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear. We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number. This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. ABSTRACT: Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition, complex spikes with a greater number of spikelets were associated with a subsequent reduction in simple spike firing rate. We therefore suggest that one important function of spikelets is the modulation of Purkinje cell simple spike firing frequency, which has implications for controlling cerebellar cortical output and motor learning.


Assuntos
Células de Purkinje/fisiologia , Potenciais de Ação , Animais , Gatos , Feminino , Masculino , Ratos Sprague-Dawley , Ratos Wistar
16.
J Physiol ; 595(15): 5341-5357, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28516455

RESUMO

KEY POINTS: Cerebellar Purkinje cells (PCs) generate two types of action potentials, simple and complex spikes. Although they are generated by distinct mechanisms, interactions between the two spike types exist. Zebrin staining produces alternating positive and negative stripes of PCs across most of the cerebellar cortex. Thus, here we compared simple spike-complex spike interactions both within and across zebrin populations. Simple spike activity undergoes a complex modulation preceding and following a complex spike. The amplitudes of the pre- and post-complex spike modulation phases were correlated across PCs. On average, the modulation was larger for PCs in zebrin positive regions. Correlations between aspects of the complex spike waveform and simple spike activity were found, some of which varied between zebrin positive and negative PCs. The implications of the results are discussed with regard to hypotheses that complex spikes are triggered by rises in simple spike activity for either motor learning or homeostatic functions. ABSTRACT: Purkinje cells (PCs) generate two types of action potentials, called simple and complex spikes (SSs and CSs). We first investigated the CS-associated modulation of SS activity and its relationship to the zebrin status of the PC. The modulation pattern consisted of a pre-CS rise in SS activity, and then, following the CS, a pause, a rebound, and finally a late inhibition of SS activity for both zebrin positive (Z+) and negative (Z-) cells, though the amplitudes of the phases were larger in Z+ cells. Moreover, the amplitudes of the pre-CS rise with the late inhibitory phase of the modulation were correlated across PCs. In contrast, correlations between modulation phases across CSs of individual PCs were generally weak. Next, the relationship between CS spikelets and SS activity was investigated. The number of spikelets/CS correlated with the average SS firing rate only for Z+ cells. In contrast, correlations across CSs between spikelet numbers and the amplitudes of the SS modulation phases were generally weak. Division of spikelets into likely axonally propagated and non-propagated groups (based on their interspikelet interval) showed that the correlation of spikelet number with SS firing rate primarily reflected a relationship with non-propagated spikelets. In sum, the results show both zebrin-related and non-zebrin-related physiological heterogeneity in SS-CS interactions among PCs, which suggests that the cerebellar cortex is more functionally diverse than is assumed by standard theories of cerebellar function.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Células de Purkinje/fisiologia , Potenciais de Ação , Animais , Feminino , Masculino , Ratos Sprague-Dawley , Ratos Wistar
17.
J Biol Chem ; 291(42): 21836-21847, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27502275

RESUMO

Multifunctional proteins play a variety of roles in metabolism. Here, we examine the catalytic function of the combined 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS) and chorismate mutase (CM) from Geobacillus sp. DAH7PS operates at the start of the biosynthetic pathway for aromatic metabolites, whereas CM operates in a dedicated branch of the pathway for the biosynthesis of amino acids tyrosine and phenylalanine. In line with sequence predictions, the two catalytic functions are located in distinct domains, and these two activities can be separated and retain functionality. For the full-length protein, prephenate, the product of the CM reaction, acts as an allosteric inhibitor for the DAH7PS. The crystal structure of the full-length protein with prephenate bound and the accompanying small angle x-ray scattering data reveal the molecular mechanism of the allostery. Prephenate binding results in the tighter association between the dimeric CM domains and the tetrameric DAH7PS, occluding the active site and therefore disrupting DAH7PS function. Acquisition of a physical gating mechanism to control catalytic function through gene fusion appears to be a general mechanism for providing allostery for this enzyme.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Corismato Mutase/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Regulação Alostérica , Aminoácidos Aromáticos/metabolismo , Corismato Mutase/genética , Cristalografia por Raios X , Geobacillus/enzimologia , Ácido Chiquímico/metabolismo
18.
Cerebellum ; 16(1): 230-252, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27193702

RESUMO

For many decades, the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here, we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum and might also play a role in development. We then consider the potential problems and benefits of it having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, and variable complex spike waveforms) make it more or less suitable for one or the other of these functions, and why having multiple functions makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest that it has the potential to act in both the motor learning and motor control functions of the cerebellum.


Assuntos
Cerebelo/fisiologia , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Núcleo Olivar/fisiologia , Animais , Consenso , Humanos , Vias Neurais/fisiologia
19.
J Am Chem Soc ; 138(6): 2036-45, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26794122

RESUMO

Allosteric regulation of protein function, the process by which binding of an effector molecule provokes a functional response from a distal site, is critical for metabolic pathways. Yet, the way the allosteric signal is communicated remains elusive, especially in dynamic, entropically driven regulation mechanisms for which no major conformational changes are observed. To identify these dynamic allosteric communication networks, we have developed an approach that monitors the pKa variations of ionizable residues over the course of molecular dynamics simulations performed in the presence and absence of an allosteric regulator. As the pKa of ionizable residues depends on their environment, it represents a simple metric to monitor changes in several complex factors induced by binding an allosteric effector. These factors include Coulombic interactions, hydrogen bonding, and solvation, as well as backbone motions and side chain fluctuations. The predictions that can be made with this method concerning the roles of ionizable residues for allosteric communication can then be easily tested experimentally by changing the working pH of the protein or performing single point mutations. To demonstrate the method's validity, we have applied this approach to the subtle dynamic regulation mechanism observed for Neisseria meningitidis 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, the first enzyme of aromatic biosynthesis. We were able to identify key communication pathways linking the allosteric binding site to the active site of the enzyme and to validate these findings experimentally by reestablishing the catalytic activity of allosterically inhibited enzyme via modulation of the working pH, without compromising the binding affinity of the allosteric regulator.


Assuntos
Proteínas/química , Regulação Alostérica , Ligação de Hidrogênio , Modelos Moleculares
20.
Cerebellum ; 15(1): 10-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26559892

RESUMO

The control of deep cerebellar nuclear (DCN) neuronal firing is central to cerebellar function but is not well understood. The large majority of synapses onto DCN neurons derive from Purkinje cells (PCs), suggesting that PC activity is an important determinant of DCN firing; however, PCs fire both simple and complex spikes (CSs), and little is known about how the latter's action affects DCN activity. Thus, here, we explored the effects of CSs on DCN activity. CSs were recorded from PC arrays along with individual DCN neurons. Presumed synaptically connected PC-DCN cell pairs were identified using CS-triggered correlograms of DCN activity, which also showed that CS activity was associated with a predominantly inhibitory effect on DCN activity. The strength of the CS effect varied as a function of synchrony, such that isolated CSs produced only weak inhibition of DCN activity, whereas highly synchronous CSs caused a larger drop in firing levels. Although the present findings were obtained in anesthetized animals, similar CS synchrony levels exist in awake animals, and changes in synchrony level have been observed in association with movements in awake animals. Thus, the present data suggest that synchronous CS activity may be a mechanism for shaping DCN output related to motor commands.


Assuntos
Potenciais de Ação/fisiologia , Núcleos Cerebelares/citologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Células de Purkinje/fisiologia , Animais , Estimulação Elétrica , Feminino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA