Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 35: 591-613, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31299172

RESUMO

The vertebrate vasculature displays high organotypic specialization, with the structure and function of blood vessels catering to the specific needs of each tissue. A unique feature of the central nervous system (CNS) vasculature is the blood-brain barrier (BBB). The BBB regulates substance influx and efflux to maintain a homeostatic environment for proper brain function. Here, we review the development and cell biology of the BBB, focusing on the cellular and molecular regulation of barrier formation and the maintenance of the BBB through adulthood. We summarize unique features of CNS endothelial cells and highlight recent progress in and general principles of barrier regulation. Finally, we illustrate why a mechanistic understanding of the development and maintenance of the BBB could provide novel therapeutic opportunities for CNS drug delivery.


Assuntos
Transporte Biológico/fisiologia , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/crescimento & desenvolvimento , Sistema Nervoso Central/citologia , Células Endoteliais/citologia , Animais , Astrócitos/citologia , Membrana Basal/citologia , Membrana Basal/metabolismo , Transporte Biológico/genética , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/fisiologia , Sistema Nervoso Central/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Homeostase , Humanos , Leucócitos , Acoplamento Neurovascular/fisiologia , Pericitos/citologia , Junções Íntimas , Transcitose/fisiologia , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia
2.
Nature ; 596(7872): 444-448, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34349262

RESUMO

MFSD2A is a sodium-dependent lysophosphatidylcholine symporter that is responsible for the uptake of docosahexaenoic acid into the brain1,2, which is crucial for the development and performance of the brain3. Mutations that affect MFSD2A cause microcephaly syndromes4,5. The ability of MFSD2A to transport lipid is also a key mechanism that underlies its function as an inhibitor of transcytosis to regulate the blood-brain barrier6,7. Thus, MFSD2A represents an attractive target for modulating the permeability of the blood-brain barrier for drug delivery. Here we report the cryo-electron microscopy structure of mouse MFSD2A. Our structure defines the architecture of this important transporter, reveals its unique extracellular domain and uncovers its substrate-binding cavity. The structure-together with our functional studies and molecular dynamics simulations-identifies a conserved sodium-binding site, reveals a potential lipid entry pathway and helps to rationalize MFSD2A mutations that underlie microcephaly syndromes. These results shed light on the critical lipid transport function of MFSD2A and provide a framework to aid in the design of specific modulators for therapeutic purposes.


Assuntos
Barreira Hematoencefálica/metabolismo , Metabolismo dos Lipídeos , Simportadores/química , Simportadores/metabolismo , Animais , Sítios de Ligação , Transporte Biológico , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Domínios Proteicos , Sódio/metabolismo , Simportadores/genética , Simportadores/ultraestrutura
3.
Nature ; 532(7599): 380-4, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27074508

RESUMO

Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells. The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-ß (PDGFRß)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRß-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.


Assuntos
Envelhecimento/fisiologia , Arteríolas/fisiologia , Osso e Ossos/irrigação sanguínea , Capilares/fisiologia , Células-Tronco Hematopoéticas/citologia , Nicho de Células-Tronco , Animais , Arteríolas/citologia , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Capilares/citologia , Contagem de Células , Células Endoteliais/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Osteogênese , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Fator de Células-Tronco/metabolismo
5.
Nat Cell Biol ; 19(3): 189-201, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28218908

RESUMO

Blood vessels in the mammalian skeletal system control bone formation and support haematopoiesis by generating local niche environments. While a specialized capillary subtype, termed type H, has been recently shown to couple angiogenesis and osteogenesis in adolescent, adult and ageing mice, little is known about the formation of specific endothelial cell populations during early developmental endochondral bone formation. Here, we report that embryonic and early postnatal long bone contains a specialized endothelial cell subtype, termed type E, which strongly supports osteoblast lineage cells and later gives rise to other endothelial cell subpopulations. The differentiation and functional properties of bone endothelial cells require cell-matrix signalling interactions. Loss of endothelial integrin ß1 leads to endothelial cell differentiation defects and impaired postnatal bone growth, which is, in part, phenocopied by endothelial cell-specific laminin α5 mutants. Our work outlines fundamental principles of vessel formation and endothelial cell differentiation in the developing skeletal system.


Assuntos
Osso e Ossos/citologia , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Osteogênese , Transdução de Sinais , Adipocinas/metabolismo , Animais , Apelina , Osso e Ossos/irrigação sanguínea , Osso e Ossos/diagnóstico por imagem , Capilares/citologia , Adesão Celular , Citometria de Fluxo , Imuno-Histoquímica , Integrases/metabolismo , Integrina beta1/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neovascularização Fisiológica , Fenótipo , Microtomografia por Raio-X
6.
Nat Cell Biol ; 19(8): 915-927, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28714968

RESUMO

Endothelial sprouting and proliferation are tightly coordinated processes mediating the formation of new blood vessels during physiological and pathological angiogenesis. Endothelial tip cells lead sprouts and are thought to suppress tip-like behaviour in adjacent stalk endothelial cells by activating Notch. Here, we show with genetic experiments in postnatal mice that the level of active Notch signalling is more important than the direct Dll4-mediated cell-cell communication between endothelial cells. We identify endothelial expression of VEGF-A and of the chemokine receptor CXCR4 as key processes controlling Notch-dependent vessel growth. Surprisingly, genetic experiments targeting endothelial tip cells in vivo reveal that they retain their function without Dll4 and are also not replaced by adjacent, Dll4-positive cells. Instead, activation of Notch directs tip-derived endothelial cells into developing arteries and thereby establishes that Dll4-Notch signalling couples sprouting angiogenesis and artery formation.


Assuntos
Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica , Receptor Notch1/metabolismo , Artéria Retiniana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Comunicação Celular , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Receptor Notch1/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Artéria Retiniana/citologia , Transdução de Sinais , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA