Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 130(13): 4338-46, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18335931

RESUMO

We conducted over 150 ns of simulation of a protegrin-1 octamer pore in a lipid bilayer composed of palmitoyloleoyl-phosphatidylethanolamine (POPE) and palmitoyloleoyl-phosphatidylglycerol (POPG) lipids mimicking the inner membrane of a bacterial cell. The simulations improve on a model of a pore proposed from recent NMR experiments and provide a coherent understanding of the molecular mechanism of antimicrobial activity. Although lipids tilt somewhat toward the peptides, the simulated protegrin-1 pore more closely follows the barrel-stave model than the toroidal-pore model. The movement of ions is investigated through the pore. The pore selectively allows negatively charged chloride ions to pass through at an average rate of one ion every two nanoseconds. Only two events are observed of sodium ions crossing through the pore. The potential of mean force is calculated for the water and both ion types. It is determined that the chloride ions move through the pore with ease, similarly to the water molecules with the exception of a zone of restricted movement midway through the pore. In bacteria, ions moving through the pore will compromise the integrity of the transmembrane potential. Without the transmembrane potential as a countermeasure, water will readily flow inside the higher osmolality cytoplasm. We determine that the diffusivity of water through a single PG-1 pore is sufficient to cause fast cell death by osmotic lysis.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Modelos Biológicos , Proteínas/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Candida albicans/efeitos dos fármacos , Cloretos/química , Simulação por Computador , Escherichia coli/efeitos dos fármacos , Transporte de Íons , Bicamadas Lipídicas/química , Listeria monocytogenes/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Concentração Osmolar , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , Conformação Proteica , Proteínas/farmacologia , Sódio/química , Fatores de Tempo , Água/química
2.
Peptides ; 29(7): 1085-93, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18455267

RESUMO

The therapeutic, antibiotic potential of antimicrobial peptides can be prohibitively diminished because of the cytotoxicity and hemolytic profiles they exhibit. Quantifying and predicting antimicrobial peptide toxicity against host cells is thus an important goal of AMP related research. In this work, we present quantitative structure activity relationships for toxicity of protegrin-like antimicrobial peptides against human cells (epithelial and red blood cells) based on physicochemical properties, such as interaction energies and radius of gyration, calculated from molecular dynamics simulations of the peptides in aqueous solvent. The hypothesis is that physicochemical properties of peptides, as manifest by their structure and interactions in a solvent and as captured by atomistic simulations, are responsible for their toxicity against human cells. Protegrins are beta-hairpin peptides with high activity against a wide variety of microbial species, but in their native state are toxic to human cells. Sixty peptides with experimentally determined toxicities were used to develop the models. We test the resulting relationships to determine their ability to predict the toxicity of several protegrin-like peptides. The developed QSARs provide insight into the mechanism of cytotoxic action of antimicrobial peptides. In a subsequent blind test, the QSAR correctly ranked four of five protegrin analogues newly synthesized and tested for toxicity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Células Epiteliais/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Colo do Útero/citologia , Fenômenos Químicos , Físico-Química , Simulação por Computador , Relação Dose-Resposta a Droga , Feminino , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Dados de Sequência Molecular , Valor Preditivo dos Testes , Temperatura
3.
Biochim Biophys Acta ; 1758(9): 1224-34, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16753133

RESUMO

Simulations of antimicrobial peptides in membrane mimics can provide the high resolution, atomistic picture that is necessary to decipher which sequence and structure components are responsible for activity and toxicity. With such detailed insight, engineering new sequences that are active but non-toxic can, in principle, be rationalized. Armed with supercomputers and accurate force fields for biomolecular interactions, we can now investigate phenomena that span hundreds of nanoseconds. Although the phenomena involved in antimicrobial activity, (i.e., diffusion of peptides, interaction with lipid layers, secondary structure attainment, possible surface aggregation, possible formation of pores, and destruction of the lipid layer integrity) collectively span time scales still prohibitively long for classical mechanics simulations, it is now feasible to investigate the initial approach of single peptides and their interaction with membrane mimics. In this article, we discuss the promise and the challenges of widely used models and detail our recent work on peptide-micelle simulations as an attractive alternative to peptide-bilayer simulations. We detail our results with two large structural classes of peptides, helical and beta-sheet and demonstrate how simulations can assist in engineering of novel antimicrobials with therapeutic potential.


Assuntos
Anti-Infecciosos/síntese química , Micelas , Peptídeos/síntese química , Engenharia de Proteínas , Sequência de Aminoácidos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/farmacologia , Estrutura Secundária de Proteína
4.
BMC Biochem ; 8: 11, 2007 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-17634088

RESUMO

BACKGROUND: We applied a combined experimental and computational approach to ascertain how peptides interact with host and microbial membrane surrogates, in order to validate simulation methodology we hope will enable the development of insights applicable to the design of novel antimicrobial peptides. We studied the interactions of two truncated versions of the potent, but cytotoxic, antimicrobial octadecapeptide protegrin-1, PC-72 [LCYCRRRFCVC] and PC-73 [CYCRRRFCVC]. RESULTS: We used a combination of FTIR, fluorescence spectroscopy and molecular dynamics simulations to examine the peptides' interactions with sodium dodecylsulfate (SDS) and dodecylphosphocholine (DPC) micelles. The relative amounts of secondary structure determined by FTIR agreed with those from the simulations. Fluorescence spectroscopy, deuterium exchange experiments and the simulations all indicate that neither peptide embeds itself deeply into the micelle core. Although molecular simulations placed both peptides at the micelle-water interface, further examination revealed differences in how certain residues interacted with the micelle core. CONCLUSION: We demonstrate here the accuracy of molecular dynamics simulations methods through comparison with experiments, and have used the simulation results to enhance the understanding of how these two peptides interact with the two types of micelles. We find agreement between simulation and experimental results in the final structure of the peptides and in the peptides final conformation with respect to the micelle. Looking in depth at the peptide interactions, we find differences in the interactions between the two peptides from the simulation data; Leu-1 on PC-72 interacts strongly with the SDS micelle, though the interaction is not persistent--the residue withdraws and inserts into the micelle throughout the simulation.


Assuntos
Simulação por Computador , Micelas , Oligopeptídeos/química , Fosforilcolina/análogos & derivados , Dodecilsulfato de Sódio/química , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Cinética , Modelos Moleculares , Fosforilcolina/química , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
5.
Biopolymers ; 84(2): 219-31, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16235232

RESUMO

In this work, the naturally occurring beta-hairpin antimicrobial peptide protegrin-1 (PG-1) is studied by molecular dynamics simulation in all-atom sodium dodecylsulfate and dodecylphosphocholine micelles. These simulations provide a high-resolution picture of the interactions between the peptide and simple models of bacterial and mammalian membranes. Both micelles show significant disruption, as is expected for a peptide that is both active against bacteria and toxic to host cells. There is, however, clear differentiation between the behavior in SDS versus DPC, which suggests different mechanisms of interaction for PG-1 with mammalian and bacterial membranes. Specifically, the equilibrium orientation of the peptide relative to SDS is a mirror image of its position relative to DPC. In both systems, the arginine residues of PG-1 strongly interact with the head groups of the micelles. In DPC, the peptide prefers a location closer to the core of the micelle with Phe12, Val14, and Val16 imbedded in the core and the other side of the hairpin, which includes Leu5 and Tyr7, located closer to the surface of the micelle. In SDS, the peptide prefers a location at the micelle-water interface. The peptide position is reversed, with Leu5 and Cys6 imbedded furthest in the micelle core and Phe12, Val14, and Val16 on the surface of the micelle. We discuss the implications of these results with respect to activity and toxicity.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Simulação por Computador , Peptídeos , Proteínas , Sequência de Aminoácidos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/toxicidade , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Arginina/química , Interações Hidrofóbicas e Hidrofílicas , Micelas , Modelos Moleculares , Modelos Estruturais , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/toxicidade , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Estrutura Secundária de Proteína , Proteínas/química , Proteínas/farmacologia , Proteínas/toxicidade , Dodecilsulfato de Sódio/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA