Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Gen Virol ; 97(9): 2058-2072, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27449792

RESUMO

After successful infection and replication of its genome in the nucleus of the host cell, influenza A virus faces several challenges before newly assembled viral particles can bud off from the plasma membrane, giving rise to a new infectious virus. The viral ribonucleoprotein (vRNP) complexes need to exit from the nucleus and be transported to the virus assembly sites at the plasma membrane. Moreover, they need to be bundled to ensure the incorporation of precisely one of each of the eight viral genome segments into newly formed viral particles. Similarly, viral envelope glycoproteins and other viral structural proteins need to be targeted to virus assembly sites for viral particles to form and bud off from the plasma membrane. During all these steps influenza A virus heavily relies on a tight interplay with its host, exploiting host-cell proteins for its own purposes. In this review, we summarize current knowledge on late stages of the influenza virus replication cycle, focusing on the role of host-cell proteins involved in this process.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , Montagem de Vírus , Replicação Viral , Transporte Biológico , Modelos Biológicos , Liberação de Vírus
2.
J Virol ; 89(1): 863-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25320322

RESUMO

Human interferon-inducible transmembrane proteins (IFITMs) were identified as restriction factors of influenza A virus (IAV). Given the important role of pigs in the zoonotic cycle of IAV, we cloned swine IFITMs (swIFITMs) and found two IFITM1-like proteins, one homologue of IFITM2, and a homologue of IFITM3. We show that swIFITM2 and swIFITM3 localize to endosomes and display potent antiviral activities. Knockdown of swIFITMs strongly reduced virus inhibition by interferon, establishing the swIFITMs as potent restriction factors in porcine cells.


Assuntos
Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Interferons/imunologia , Proteínas de Membrana/imunologia , Replicação Viral , Animais , Linhagem Celular , Endossomos/química , Proteínas de Membrana/análise , Suínos
4.
J Exp Med ; 218(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33882122

RESUMO

The disease severity of influenza is highly variable in humans, and one genetic determinant behind these differences is the IFITM3 gene. As an effector of the interferon response, IFITM3 potently blocks cytosolic entry of influenza A virus (IAV). Here, we reveal a novel level of inhibition by IFITM3 in vivo: We show that incorporation of IFITM3 into IAV particles competes with incorporation of viral hemagglutinin (HA). Decreased virion HA levels did not reduce infectivity, suggesting that high HA density on IAV virions may be an antagonistic strategy used by the virus to prevent direct inhibition. However, we found that IFITM3-mediated reduction in HA content sensitizes IAV to antibody-mediated neutralization. Mathematical modeling predicted that this effect decreases and delays peak IAV titers, and we show that, indeed, IFITM3-mediated sensitization of IAV to antibody-mediated neutralization impacts infection outcome in an in vivo mouse model. Overall, our data describe a previously unappreciated interplay between the innate effector IFITM3 and the adaptive immune response.


Assuntos
Anticorpos Neutralizantes/imunologia , Vírus da Influenza A/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Células A549 , Imunidade Adaptativa/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cães , Feminino , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Influenza Humana/imunologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteólise
5.
Methods Mol Biol ; 1836: 59-88, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30151569

RESUMO

Influenza viruses are constantly circulating among humans, in which they cause seasonal epidemics of severe respiratory disease. Additionally, these zoonotic viruses infect different mammals and birds, from which new antigenic variants are occasionally transmitted to humans leading to devastating global pandemics. Surveillance programs, in which viruses from the main reservoir (waterfowl), intermediate hosts (like pigs and other farm animals), and other affected species are isolated and characterized, are crucial for the global influenza prevention strategy. This chapter gives an overview of the most commonly used methods for the propagation and titration of influenza viruses, which are key steps in surveillance procedures, as well as in vaccine development and basic research. Depending on the host and the viral strain, primary isolates are obtained from biological samples of different origin and subsequently amplified in embryonated chicken eggs or cell cultures. These propagation procedures are the focus of the first part of this chapter. Once the initial isolates have been amplified, virus titration methods based on particular characteristics of influenza viruses, such as their ability to agglutinate red blood cells (RBCs) or to induce cytopathic effects (CPE) in cell monolayers, are used to estimate the amount of viral particles. Such approaches, like the hemagglutination assay (HA assay), 50% tissue culture infectious dose (TCID50), or plaque assay, are included in the second part of this chapter. Although they are simple and cost-effective, some of these techniques have been partially replaced by faster and more sensitive methods based on the quantification of viral genomes, such as the quantitative real-time reverse transcription PCR (RT-qPCR), which is presented at the end of this section. The different protocols are explained in detail in order to facilitate the preparation and quantification of infectious virus stocks.


Assuntos
Influenza Humana/diagnóstico , Influenza Humana/virologia , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/virologia , Orthomyxoviridae/fisiologia , Carga Viral , Replicação Viral , Animais , Linhagem Celular , Células Cultivadas , Embrião de Galinha , Testes de Hemaglutinação , Humanos , Orthomyxoviridae/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Ensaio de Placa Viral
6.
Sci Rep ; 7(1): 8629, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819179

RESUMO

In recent years genome-wide RNAi screens have revealed hundreds of cellular factors required for influenza virus infections in human cells. The long-term goal is to establish some of them as drug targets for the development of the next generation of antivirals against influenza. We found that several members of the polo-like kinases (PLK), a family of serine/threonine kinases with well-known roles in cell cycle regulation, were identified as hits in four different RNAi screens and we therefore studied their potential as drug target for influenza. We show that knockdown of PLK1, PLK3, and PLK4, as well as inhibition of PLK kinase activity by four different compounds, leads to reduced influenza virus replication, and we map the requirement of PLK activity to early stages of the viral replication cycle. We also tested the impact of the PLK inhibitor BI2536 on influenza virus replication in a human lung tissue culture model and observed strong inhibition of virus replication with no measurable toxicity. This study establishes the PLKs as potential drug targets for influenza and contributes to a more detailed understanding of the intricate interactions between influenza viruses and their host cells.


Assuntos
Vírus da Influenza A/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , Antimitóticos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cães , Glicina/análogos & derivados , Glicina/farmacologia , Células HEK293 , Humanos , Vírus da Influenza A/fisiologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Pteridinas/farmacologia , Interferência de RNA , Sulfonas/farmacologia , Proteínas Supressoras de Tumor , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA