Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2313809121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437538

RESUMO

The potential of engineered enzymes in industrial applications is often limited by their expression levels, thermal stability, and catalytic diversity. De novo enzyme design faces challenges due to the complexity of enzymatic catalysis. An alternative approach involves expanding natural enzyme capabilities for new substrates and parameters. Here, we introduce CoSaNN (Conformation Sampling using Neural Network), an enzyme design strategy using deep learning for structure prediction and sequence optimization. CoSaNN controls enzyme conformations to expand chemical space beyond simple mutagenesis. It employs a context-dependent approach for generating enzyme designs, considering non-linear relationships in sequence and structure space. We also developed SolvIT, a graph NN predicting protein solubility in Escherichia coli, optimizing enzyme expression selection from larger design sets. Using this method, we engineered enzymes with superior expression levels, with 54% expressed in E. coli, and increased thermal stability, with over 30% having higher Tm than the template, with no high-throughput screening. Our research underscores AI's transformative role in protein design, capturing high-order interactions and preserving allosteric mechanisms in extensively modified enzymes, and notably enhancing expression success rates. This method's ease of use and efficiency streamlines enzyme design, opening broad avenues for biotechnological applications and broadening field accessibility.


Assuntos
Aprendizado Profundo , Escherichia coli/genética , Biotecnologia , Catálise , Ensaios de Triagem em Larga Escala
2.
Bioinformatics ; 35(9): 1591-1593, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951584

RESUMO

SUMMARY: Methods for antibody structure prediction rely on sequence homology to experimentally determined structures. Resulting models may be accurate but are often stereochemically strained, limiting their usefulness in modeling and design workflows. We present the AbPredict 2 web-server, which instead of using sequence homology, conducts a Monte Carlo-based search for low-energy combinations of backbone conformations to yield accurate and unstrained antibody structures. AVAILABILITY AND IMPLEMENTATION: We introduce several important improvements over the previous AbPredict implementation: (i) backbones and sidechains are now modeled using ideal bond lengths and angles, substantially reducing stereochemical strain, (ii) sampling of the rigid-body orientation at the light-heavy chain interface is improved, increasing model accuracy and (iii) runtime is reduced 20-fold without compromising accuracy, enabling the implementation of AbPredict 2 as a fully automated web-server (http://abpredict.weizmann.ac.il). Accurate and unstrained antibody model structures may in some cases obviate the need for experimental structures in antibody optimization workflows.


Assuntos
Computadores , Software , Anticorpos , Modelos Moleculares , Método de Monte Carlo , Conformação Proteica
3.
Proc Natl Acad Sci U S A ; 114(41): 10900-10905, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973872

RESUMO

Natural proteins must both fold into a stable conformation and exert their molecular function. To date, computational design has successfully produced stable and atomically accurate proteins by using so-called "ideal" folds rich in regular secondary structures and almost devoid of loops and destabilizing elements, such as cavities. Molecular function, such as binding and catalysis, however, often demands nonideal features, including large and irregular loops and buried polar interaction networks, which have remained challenging for fold design. Through five design/experiment cycles, we learned principles for designing stable and functional antibody variable fragments (Fvs). Specifically, we (i) used sequence-design constraints derived from antibody multiple-sequence alignments, and (ii) during backbone design, maintained stabilizing interactions observed in natural antibodies between the framework and loops of complementarity-determining regions (CDRs) 1 and 2. Designed Fvs bound their ligands with midnanomolar affinities and were as stable as natural antibodies, despite having >30 mutations from mammalian antibody germlines. Furthermore, crystallographic analysis demonstrated atomic accuracy throughout the framework and in four of six CDRs in one design and atomic accuracy in the entire Fv in another. The principles we learned are general, and can be implemented to design other nonideal folds, generating stable, specific, and precise antibodies and enzymes.


Assuntos
Proteína de Transporte de Acila S-Acetiltransferase/metabolismo , Anticorpos/química , Anticorpos/metabolismo , Fragmentos de Imunoglobulinas/metabolismo , Insulina/metabolismo , Proteína de Transporte de Acila S-Acetiltransferase/imunologia , Anticorpos/imunologia , Sítios de Ligação de Anticorpos , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/imunologia , Regiões Determinantes de Complementaridade/metabolismo , Cristalografia por Raios X , Humanos , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/imunologia , Insulina/imunologia , Ligantes , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Conformação Proteica
4.
Proteins ; 85(1): 30-38, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27717001

RESUMO

Current methods for antibody structure prediction rely on sequence homology to known structures. Although this strategy often yields accurate predictions, models can be stereo-chemically strained. Here, we present a fully automated algorithm, called AbPredict, that disregards sequence homology, and instead uses a Monte Carlo search for low-energy conformations built from backbone segments and rigid-body orientations that appear in antibody molecular structures. We find cases where AbPredict selects accurate loop templates with sequence identity as low as 10%, whereas the template of highest sequence identity diverges substantially from the query's conformation. Accordingly, in several cases reported in the recent Antibody Modeling Assessment benchmark, AbPredict models were more accurate than those from any participant, and the models' stereo-chemical quality was consistently high. Furthermore, in two blind cases provided to us by crystallographers prior to structure determination, the method achieved <1.5 Ångstrom overall backbone accuracy. Accurate modeling of unstrained antibody structures will enable design and engineering of improved binders for biomedical research directly from sequence. Proteins 2016; 85:30-38. © 2016 Wiley Periodicals, Inc.


Assuntos
Algoritmos , Anticorpos/química , Biologia Computacional/métodos , Modelos Estatísticos , Software , Sequência de Aminoácidos , Simulação por Computador , Bases de Dados de Proteínas , Humanos , Modelos Moleculares , Método de Monte Carlo , Conformação Proteica , Termodinâmica
5.
Proteins ; 83(8): 1385-406, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25670500

RESUMO

Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function--essential to exert control over all polypeptide degrees of freedom--remains a critical challenge. Most previous attempts to design new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody designs that target the same molecular surfaces as nine natural, high-affinity antibodies; in five cases interface sequence identity is above 30%, and in four of those the backbone conformation at the core of the antibody binding surface is within 1 Å root-mean square deviation from the natural antibodies. Designs recapitulate polar interaction networks observed in natural complexes, and amino acid sidechain rigidity at the designed binding surface, which is likely important for affinity and specificity, is high compared to previous design studies. In designed anti-lysozyme antibodies, complementarity-determining regions (CDRs) at the periphery of the interface, such as L1 and H2, show greater backbone conformation diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody, potentially enhancing affinity and specificity.


Assuntos
Regiões Determinantes de Complementaridade/química , Biologia Computacional/métodos , Conformação Proteica , Engenharia de Proteínas/métodos , Análise de Sequência de Proteína/métodos , Algoritmos , Sequência de Aminoácidos , Lógica Fuzzy , Humanos , Dados de Sequência Molecular
6.
Nat Commun ; 9(1): 2780, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018322

RESUMO

Automated design of enzymes with wild-type-like catalytic properties has been a long-standing but elusive goal. Here, we present a general, automated method for enzyme design through combinatorial backbone assembly. Starting from a set of homologous yet structurally diverse enzyme structures, the method assembles new backbone combinations and uses Rosetta to optimize the amino acid sequence, while conserving key catalytic residues. We apply this method to two unrelated enzyme families with TIM-barrel folds, glycoside hydrolase 10 (GH10) xylanases and phosphotriesterase-like lactonases (PLLs), designing 43 and 34 proteins, respectively. Twenty-one GH10 and seven PLL designs are active, including designs derived from templates with <25% sequence identity. Moreover, four designs are as active as natural enzymes in these families. Atomic accuracy in a high-activity GH10 design is further confirmed by crystallographic analysis. Thus, combinatorial-backbone assembly and design may be used to generate stable, active, and structurally diverse enzymes with altered selectivity or activity.


Assuntos
Técnicas de Química Combinatória , Glicosídeo Hidrolases/química , Hidrolases de Triester Fosfórico/química , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Cinética , Modelos Moleculares , Hidrolases de Triester Fosfórico/genética , Hidrolases de Triester Fosfórico/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica
7.
Protein Eng Des Sel ; 30(9): 611-617, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472478

RESUMO

While potent monoclonal antibodies against ricin were introduced over the years, the question whether increasing antibody affinity enables better toxin neutralization was not fully addressed yet. The aim of this study was to characterize the contribution of antibody affinity to the ricin neutralization potential of the antibody. cHD23 monoclonal antibody that targets the toxin B-subunit and interferes with its binding to membranal receptors, was isolated. In order to create antibody clones with improved affinity toward ricin, a scFv-phage display library containing mutated versions of the variable regions of cHD23 was constructed and clones with improved binding of ricin were isolated. Structural modeling of these mutants suggests that the inserted mutations may increase the antibody conformational flexibility thus improving its ability to bind ricin. While it was found that the selected clones exhibited improved neutralization of ricin, the correlation between the KD values and potency was only minor (r = 0.55). However, a positive correlation (r = 0.84) exist between the off-rate values (koff) of the affinity matured clones and their ability to neutralize ricin. As cell membranes display inordinately large amounts of potential surface binding sites for ricin, it is suggested that antibodies with improved off-rate values block the ability of the toxin to bind to target receptors, in a highly efficient manner. Currently, antibody-based therapy is the most effective treatment for ricin intoxication and it is anticipated that the findings of this study will provide useful information and a possible strategy to design an improved antibody-based therapy for the toxin.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Afinidade de Anticorpos , Biblioteca de Peptídeos , Ricina/antagonistas & inibidores , Anticorpos de Cadeia Única/química , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/isolamento & purificação , Clonagem Molecular , Células HeLa , Humanos , Hibridomas/química , Hibridomas/imunologia , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Mutação , Testes de Neutralização , Ligação Proteica , Estrutura Secundária de Proteína , Ricina/química , Ricina/imunologia , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA