Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Mol Ther ; 32(6): 1817-1834, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38627969

RESUMO

Cellular therapies for the treatment of human diseases, such as chimeric antigen receptor (CAR) T and natural killer (NK) cells have shown remarkable clinical efficacy in treating hematological malignancies; however, current methods mainly utilize viral vectors that are limited by their cargo size capacities, high cost, and long timelines for production of clinical reagent. Delivery of genetic cargo via DNA transposon engineering is a more timely and cost-effective approach, yet has been held back by less efficient integration rates. Here, we report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieves high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells. Our proof-of-principle TcB-M engineering of CAR-NK and CAR-T cells shows low integrated vector copy number, a safe insertion site profile, robust in vitro function, and improves survival in a Burkitt lymphoma xenograft model in vivo. Overall, TcB-M is a versatile, safe, efficient and open-source option for the rapid manufacture and preclinical testing of primary human immune cell therapies through delivery of multicistronic large cargo via transposition.


Assuntos
Linfoma de Burkitt , Vetores Genéticos , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Transposases , Humanos , Transposases/genética , Transposases/metabolismo , Animais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Linfoma de Burkitt/terapia , Linfoma de Burkitt/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linhagem Celular Tumoral , Elementos de DNA Transponíveis , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transgenes
3.
Mol Cell ; 61(4): 625-639, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26876939

RESUMO

Reduction of translational fidelity often occurs in cells with high rates of protein synthesis, generating defective ribosomal products. If not removed, such aberrant proteins can be a major source of cellular stress causing human diseases. Here, we demonstrate that mTORC1 promotes the formation of immunoproteasomes for efficient turnover of defective proteins and cell survival. mTORC1 sequesters precursors of immunoproteasome ß subunits via PRAS40. When activated, mTORC1 phosphorylates PRAS40 to enhance protein synthesis and simultaneously to facilitate the assembly of the ß subunits for forming immunoproteasomes. Consequently, the PRAS40 phosphorylations play crucial roles in clearing aberrant proteins that accumulate due to mTORC1 activation. Mutations of RAS, PTEN, and TSC1, which cause mTORC1 hyperactivation, enhance immunoproteasome formation in cells and tissues. Those mutations increase cellular dependence on immunoproteasomes for stress response and survival. These results define a mechanism by which mTORC1 couples elevated protein synthesis with immunoproteasome biogenesis to protect cells against protein stress.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/metabolismo , Animais , Sobrevivência Celular , Células HCT116 , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Mutação , PTEN Fosfo-Hidrolase/genética , Fosforilação , Transdução de Sinais , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas ras/genética
4.
Genes Chromosomes Cancer ; 62(9): 493-500, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36959711

RESUMO

The advancement of CRISPR mediated gene engineering provides an opportunity to improve upon preclinical human cell line models of cancer predisposing syndromes. This review focuses on using CRISPR/Cas9 genome editing tools to model various human cancer predisposition syndromes. We examine the genetic mutations associated with neurofibromatosis type 1, Li-Fraumeni syndrome, Gorlin syndrome, BRCA mutant breast and ovarian cancers, and APC mutant cancers. Furthermore, we discuss the possibilities of using next-generation CRISPR-derived precision gene editing tools to introduce a variety of genetic lesions into human cell lines. The goal is to improve the quality of preclinical models surrounding these cancer predisposition syndromes through dissecting the effects of these mutations on the development of cancer and to provide new insights into the underlying mechanisms of these cancer predisposition syndromes. These studies demonstrate the continued utility and improvement of CRISPR/Cas9-induced human cell line models in studying the genetic basis of cancer.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Síndrome , Edição de Genes , Suscetibilidade a Doenças , Linhagem Celular , Neoplasias/genética
5.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298259

RESUMO

Although the APOBEC3 family of single-stranded DNA cytosine deaminases is well-known for its antiviral factors, these enzymes are rapidly gaining attention as prominent sources of mutation in cancer. APOBEC3's signature single-base substitutions, C-to-T and C-to-G in TCA and TCT motifs, are evident in over 70% of human malignancies and dominate the mutational landscape of numerous individual tumors. Recent murine studies have established cause-and-effect relationships, with both human APOBEC3A and APOBEC3B proving capable of promoting tumor formation in vivo. Here, we investigate the molecular mechanism of APOBEC3A-driven tumor development using the murine Fah liver complementation and regeneration system. First, we show that APOBEC3A alone is capable of driving tumor development (without Tp53 knockdown as utilized in prior studies). Second, we show that the catalytic glutamic acid residue of APOBEC3A (E72) is required for tumor formation. Third, we show that an APOBEC3A separation-of-function mutant with compromised DNA deamination activity and wildtype RNA-editing activity is defective in promoting tumor formation. Collectively, these results demonstrate that APOBEC3A is a "master driver" that fuels tumor formation through a DNA deamination-dependent mechanism.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/genética , Desaminação , Neoplasias Hepáticas/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA/metabolismo , Antígenos de Histocompatibilidade Menor/genética
6.
Acta Neuropathol ; 141(1): 101-116, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33025139

RESUMO

Schwannomatosis (SWNTS) is a genetic cancer predisposition syndrome that manifests as multiple and often painful neuronal tumors called schwannomas (SWNs). While germline mutations in SMARCB1 or LZTR1, plus somatic mutations in NF2 and loss of heterozygosity in chromosome 22q have been identified in a subset of patients, little is known about the epigenomic and genomic alterations that drive SWNTS-related SWNs (SWNTS-SWNs) in a majority of the cases. We performed multiplatform genomic analysis and established the molecular signature of SWNTS-SWNs. We show that SWNTS-SWNs harbor distinct genomic features relative to the histologically identical non-syndromic sporadic SWNs (NS-SWNS). We demonstrate the existence of four distinct DNA methylation subgroups of SWNTS-SWNs that are associated with specific transcriptional programs and tumor location. We show several novel recurrent non-22q deletions and structural rearrangements. We detected the SH3PXD2A-HTRA1 gene fusion in SWNTS-SWNs, with predominance in LZTR1-mutant tumors. In addition, we identified specific genetic, epigenetic, and actionable transcriptional programs associated with painful SWNTS-SWNs including PIGF, VEGF, MEK, and MTOR pathways, which may be harnessed for management of this syndrome.


Assuntos
Epigênese Genética , Genômica , Neoplasias de Bainha Neural/genética , Neurilemoma/genética , Neurofibromatoses/genética , Neoplasias Cutâneas/genética , Transcriptoma , Proteínas Adaptadoras de Transporte Vesicular/genética , Estudos de Coortes , Metilação de DNA , Fusão Gênica , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Neurofibromina 2/genética , Fatores de Transcrição/genética
7.
Curr Oncol Rep ; 23(4): 45, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721151

RESUMO

PURPOSE OF REVIEW: Patients with neurofibromatosis type 1 (NF1) are at increased risk for benign and malignant neoplasms. Recently, targeted therapy with the MEK inhibitor class has helped address these needs. We highlight recent successes with selumetinib while acknowledging ongoing challenges for NF1 patients and future directions. RECENT FINDINGS: MEK inhibitors have demonstrated efficacy for NF1-related conditions, including plexiform neurofibromas and low-grade gliomas, two common causes of NF1-related morbidity. Active investigations for NF1-related neoplasms have benefited from advanced understanding of the genomic and cell signaling alterations in these conditions and development of sound preclinical animal models. Selumetinib has become the first FDA-approved targeted therapy for NF1 following its demonstrated efficacy for inoperable plexiform neurofibroma. Investigations of combination therapy and the development of a representative NF1 swine model hold promise for translating therapies for other NF1-associated pathology.


Assuntos
Benzimidazóis/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Neurofibromatose 1/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Neurofibroma Plexiforme/tratamento farmacológico , Neurofibromatose 1/genética , Medicina de Precisão , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Suínos
8.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669386

RESUMO

Animal models are crucial to understanding human disease biology and developing new therapies. By far the most common animal used to investigate prevailing questions about human disease is the mouse. Mouse models are powerful tools for research as their small size, limited lifespan, and defined genetic background allow researchers to easily manipulate their genome and maintain large numbers of animals in general laboratory spaces. However, it is precisely these attributes that make them so different from humans and explains, in part, why these models do not accurately predict drug responses in human patients. This is particularly true of the neurofibromatoses (NFs), a group of genetic diseases that predispose individuals to tumors of the nervous system, the most common of which is Neurofibromatosis type 1 (NF1). Despite years of research, there are still many unanswered questions and few effective treatments for NF1. Genetically engineered mice have drastically improved our understanding of many aspects of NF1, but they do not exemplify the overall complexity of the disease and some findings do not translate well to humans due to differences in body size and physiology. Moreover, NF1 mouse models are heavily reliant on the Cre-Lox system, which does not accurately reflect the molecular mechanism of spontaneous loss of heterozygosity that accompanies human tumor development. Spontaneous and genetically engineered large animal models may provide a valuable supplement to rodent studies for NF1. Naturally occurring comparative models of disease are an attractive prospect because they occur on heterogeneous genetic backgrounds and are due to spontaneous rather than engineered mutations. The use of animals with naturally occurring disease has been effective for studying osteosarcoma, lymphoma, and diabetes. Spontaneous NF-like symptoms including neurofibromas and malignant peripheral nerve sheath tumors (MPNST) have been documented in several large animal species and share biological and clinical similarities with human NF1. These animals could provide additional insight into the complex biology of NF1 and potentially provide a platform for pre-clinical trials. Additionally, genetically engineered porcine models of NF1 have recently been developed and display a variety of clinical features similar to those seen in NF1 patients. Their large size and relatively long lifespan allow for longitudinal imaging studies and evaluation of innovative surgical techniques using human equipment. Greater genetic, anatomic, and physiologic similarities to humans enable the engineering of precise disease alleles found in human patients and make them ideal for preclinical pharmacokinetic and pharmacodynamic studies of small molecule, cellular, and gene therapies prior to clinical trials in patients. Comparative genomic studies between humans and animals with naturally occurring disease, as well as preclinical studies in large animal disease models, may help identify new targets for therapeutic intervention and expedite the translation of new therapies. In this review, we discuss new genetically engineered large animal models of NF1 and cases of spontaneous NF-like manifestations in large animals, with a special emphasis on how these comparative models could act as a crucial translational intermediary between specialized murine models and NF1 patients.


Assuntos
Animais Geneticamente Modificados , Modelos Animais de Doenças , Engenharia Genética/métodos , Acúmulo de Mutações , Neurofibromatose 1/genética , Animais , Bovinos , Cães , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Neurofibromatose 1/tratamento farmacológico , Suínos/genética
9.
Int J Mol Sci ; 22(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445729

RESUMO

Doxorubicin (DOX) is one of the most widely used chemo-therapeutic agents in pediatric oncology. DOX elicits an inflammatory response in multiple organs, which contributes to DOX-induced adverse effects. Cancer itself causes inflammation leading to multiple pathologic conditions. The current study investigated the inflammatory response to DOX and tumors using an EL4-lymphoma, immunocompetent, juvenile mouse model. Four-week old male C57BL/6N mice were injected subcutaneously with EL4 lymphoma cells (5 × 104 cells/mouse) in the flank region, while tumor-free mice were injected with vehicle. Three days following tumor implantation, both tumor-free and tumor-bearing mice were injected intraperitoneally with either DOX (4 mg/kg/week) or saline for 3 weeks. One week after the last DOX injection, the mice were euthanized and the hearts, livers, kidneys, and serum were harvested. Gene expression and serum concentration of inflammatory markers were quantified using real-time PCR and ELISA, respectively. DOX treatment significantly suppressed tumor growth in tumor-bearing mice and caused significant cardiac atrophy in tumor-free and tumor-bearing mice. EL4 tumors elicited a strong inflammatory response in the heart, liver, and kidney. Strikingly, DOX treatment ameliorated tumor-induced inflammation paradoxical to the effect of DOX in tumor-free mice, demonstrating a widely divergent effect of DOX treatment in tumor-free versus tumor-bearing mice.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Inflamação/tratamento farmacológico , Linfoma/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Citocinas/sangue , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Coração/efeitos dos fármacos , Inflamação/sangue , Inflamação/etiologia , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Linfoma/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo
10.
Trends Genet ; 33(11): 784-801, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28888423

RESUMO

Genetic tools and mutagenesis strategies based on transposable elements are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of their inherent capacity to insert into DNA, transposons can be developed into powerful tools for chromosomal manipulations. Transposon-based forward mutagenesis screens have numerous advantages including high throughput, easy identification of mutated alleles, and providing insight into genetic networks and pathways based on phenotypes. For example, the Sleeping Beauty transposon has become highly instrumental to induce tumors in experimental animals in a tissue-specific manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models, including zebrafish, mice, and rats.


Assuntos
Elementos de DNA Transponíveis , Genômica , Modelos Genéticos , Vertebrados/genética , Animais
11.
Nature ; 512(7512): 82-6, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25043044

RESUMO

'Gain' of supernumerary copies of the 8q24.21 chromosomal region has been shown to be common in many human cancers and is associated with poor prognosis. The well-characterized myelocytomatosis (MYC) oncogene resides in the 8q24.21 region and is consistently co-gained with an adjacent 'gene desert' of approximately 2 megabases that contains the long non-coding RNA gene PVT1, the CCDC26 gene candidate and the GSDMC gene. Whether low copy-number gain of one or more of these genes drives neoplasia is not known. Here we use chromosome engineering in mice to show that a single extra copy of either the Myc gene or the region encompassing Pvt1, Ccdc26 and Gsdmc fails to advance cancer measurably, whereas a single supernumerary segment encompassing all four genes successfully promotes cancer. Gain of PVT1 long non-coding RNA expression was required for high MYC protein levels in 8q24-amplified human cancer cells. PVT1 RNA and MYC protein expression correlated in primary human tumours, and copy number of PVT1 was co-increased in more than 98% of MYC-copy-increase cancers. Ablation of PVT1 from MYC-driven colon cancer line HCT116 diminished its tumorigenic potency. As MYC protein has been refractory to small-molecule inhibition, the dependence of high MYC protein levels on PVT1 long non-coding RNA provides a much needed therapeutic target.


Assuntos
Variações do Número de Cópias de DNA/genética , Amplificação de Genes/genética , Dosagem de Genes/genética , Genes myc/genética , Proteína Oncogênica p55(v-myc)/genética , RNA Longo não Codificante/genética , Animais , Transformação Celular Neoplásica , Cromossomos Humanos Par 8/genética , Modelos Animais de Doenças , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína Oncogênica p55(v-myc)/metabolismo , Fenótipo
12.
Int J Mol Sci ; 21(3)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050713

RESUMO

Transposon mutagenesis has been used to model many types of human cancer in mice, leading to the discovery of novel cancer genes and insights into the mechanism of tumorigenesis. For this review, we identified over twenty types of human cancer that have been modeled in the mouse using Sleeping Beauty and piggyBac transposon insertion mutagenesis. We examine several specific biological insights that have been gained and describe opportunities for continued research. Specifically, we review studies with a focus on understanding metastasis, therapy resistance, and tumor cell of origin. Additionally, we propose further uses of transposon-based models to identify rarely mutated driver genes across many cancers, understand additional mechanisms of drug resistance and metastasis, and define personalized therapies for cancer patients with obesity as a comorbidity.


Assuntos
Elementos de DNA Transponíveis , Mutagênese , Neoplasias/genética , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
13.
J Hepatol ; 70(3): 470-482, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30529386

RESUMO

BACKGROUND & AIMS: The variety of alterations found in hepatocellular carcinoma (HCC) makes the identification of functionally relevant genes and their combinatorial actions in tumorigenesis challenging. Deregulation of receptor tyrosine kinases (RTKs) is frequent in HCC, yet little is known about the molecular events that cooperate with RTKs and whether these cooperative events play an active role at the root of liver tumorigenesis. METHODS: A forward genetic screen was performed using Sleeping Beauty transposon insertional mutagenesis to accelerate liver tumour formation in a genetic context in which subtly increased MET RTK levels predispose mice to tumorigenesis. Systematic sequencing of tumours identified common transposon insertion sites, thus uncovering putative RTK cooperators for liver cancer. Bioinformatic analyses were applied to transposon outcomes and human HCC datasets. In vitro and in vivo (through xenografts) functional screens were performed to assess the relevance of distinct cooperative modes to the tumorigenic properties conferred by RTKs. RESULTS: We identified 275 genes, most of which are altered in patients with HCC. Unexpectedly, these genes are not restricted to a small set of pathway/cellular processes, but cover a large spectrum of cellular functions, including signalling, metabolism, chromatin remodelling, mRNA degradation, proteasome, ubiquitination, cell cycle regulation, and chromatid segregation. We validated 15 tumour suppressor candidates, as shRNA-mediated targeting confers tumorigenicity to RTK-sensitized cells, but not to cells with basal RTK levels. This demonstrates that the context of enhanced RTK levels is essential for their action in tumour initiation. CONCLUSION: Our study identifies unanticipated genetic interactions underlying gene cooperativity with RTKs in HCC. Moreover, these results show how subtly increased levels of wild-type RTKs provide a tumour permissive cellular environment allowing a large spectrum of deregulated mechanisms to initiate liver cancer. LAY SUMMARY: Receptor tyrosine kinases (RTKs) are among signals frequently deregulated in patients with hepatocellular carcinoma and their deregulation confers essential biological properties to cancer cells. We have applied a genetic method to randomly mutate large numbers of genes in the context of a mouse model with increased RTK levels, predisposed to develop liver cancer. We identified mechanisms that accelerate tumour formation in cooperation with enhanced RTK levels. The wide array of cellular functions among these cooperators illustrates an extraordinary capability of RTKs to render the liver more vulnerable to additional alterations, by priming cells for tumour initiation.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular , Neoplasias Hepáticas , Fígado/patologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Mutagênese Insercional , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais
14.
Genome Res ; 26(1): 119-29, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26553456

RESUMO

Forward genetic screens using Sleeping Beauty (SB)-mobilized T2/Onc transposons have been used to identify common insertion sites (CISs) associated with tumor formation. Recurrent sites of transposon insertion are commonly identified using ligation-mediated PCR (LM-PCR). Here, we use RNA sequencing (RNA-seq) data to directly identify transcriptional events mediated by T2/Onc. Surprisingly, the majority (∼80%) of LM-PCR identified junction fragments do not lead to observable changes in RNA transcripts. However, in CIS regions, direct transcriptional effects of transposon insertions are observed. We developed an automated method to systematically identify T2/Onc-genome RNA fusion sequences in RNA-seq data. RNA fusion-based CISs were identified corresponding to both DNA-based CISs (Cdkn2a, Mycl1, Nf2, Pten, Sema6d, and Rere) and additional regions strongly associated with cancer that were not observed by LM-PCR (Myc, Akt1, Pth, Csf1r, Fgfr2, Wisp1, Map3k5, and Map4k3). In addition to calculating recurrent CISs, we also present complementary methods to identify potential driver events via determination of strongly supported fusions and fusions with large transcript level changes in the absence of multitumor recurrence. These methods independently identify CIS regions and also point to cancer-associated genes like Braf. We anticipate RNA-seq analyses of tumors from forward genetic screens will become an efficient tool to identify causal events.


Assuntos
Elementos de DNA Transponíveis , Detecção Precoce de Câncer/métodos , Fusão Gênica , Neoplasias/diagnóstico , Neoplasias/genética , Análise de Sequência de RNA , Mapeamento Cromossômico , Bases de Dados Genéticas , Testes Genéticos/métodos , Humanos , Mutagênese Insercional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
15.
Hepatology ; 67(3): 924-939, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28961327

RESUMO

Most hepatocellular carcinomas (HCCs) develop in a chronically injured liver, yet the extent to which this microenvironment promotes neoplastic transformation or influences selective pressures for genetic drivers of HCC remains unclear. We sought to determine the impact of hepatic injury in an established mouse model of HCC induced by Sleeping Beauty transposon mutagenesis. Chemically induced chronic liver injury dramatically increased tumor penetrance and significantly altered driver mutation profiles, likely reflecting distinct selective pressures. In addition to established human HCC genes and pathways, we identified several injury-associated candidates that represent promising loci for further study. Among them, we found that FIGN is overexpressed in human HCC and promotes hepatocyte invasion. We also validated Gli2's oncogenic potential in vivo, providing direct evidence that Hedgehog signaling can drive liver tumorigenesis in the context of chronic injury. Finally, we show that a subset of injury-associated candidate genes identifies two distinct classes of human HCCs. Further analysis of these two subclasses revealed significant trends among common molecular classification schemes of HCC. The genes and mechanisms identified here provide functional insights into the origin of HCC in a chronic liver damage environment. CONCLUSION: A chronically damaged liver microenvironment influences the genetic mechanisms that drive hepatocarcinogenesis. (Hepatology 2018;67:924-939).


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Neoplasias Hepáticas/genética , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/complicações , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imuno-Histoquímica , Fígado/patologia , Masculino , Camundongos , Mutagênese , Mutação
16.
J Hum Genet ; 63(2): 179-186, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29158600

RESUMO

CRISPR/Cas9-based tools have rapidly developed in recent years. These include CRISPR-based gene activation (CRISPRa) or inhibition (CRISPRi), for which there are libraries. CRISPR libraries for loss of function have been widely used to identify new biological mechanisms, such as drug resistance and cell survival signals. CRISPRa is highly useful in screening for gain of functions, and CRISPRi is a more powerful tool than RNA interference (RNAi) libraries in screening for loss of functions. Positive selection using a CRISPR library can detect survival cells with specific conditions, such as drug treatment, and it can easily clarify drug resistance mechanisms. Negative selection is capable of detecting dead or slow-growing cells efficiently, and it can identify survival-essential genes, which can be promising candidates for molecularly targeted drugs. In addition, negative selection can be applied for synthetic lethality interactions, where the perturbation of both genes simultaneously results in the loss of viability, but that of either gene alone does not affect viability. This mechanism is highly important to identifying the optimal combination of molecularly targeted drugs. Survival-co-essential genes in cancer cells can be identified using new methods, such as the paired guide RNA system and in combination with single-cell RNA sequencing techniques. These efficient methods can clarify interesting biological mechanisms and suggest candidates for molecularly targeted drugs. This review identifies what types of screenings were performed and suggests ideas for the next CRISPR screenings to develop new drugs.


Assuntos
Sistemas CRISPR-Cas , Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas/métodos , Biblioteca Gênica , Animais , Humanos
17.
Nature ; 488(7413): 660-4, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22895193

RESUMO

Identifying and understanding changes in cancer genomes is essential for the development of targeted therapeutics. Here we analyse systematically more than 70 pairs of primary human colon tumours by applying next-generation sequencing to characterize their exomes, transcriptomes and copy-number alterations. We have identified 36,303 protein-altering somatic changes that include several new recurrent mutations in the Wnt pathway gene TCF7L2, chromatin-remodelling genes such as TET2 and TET3 and receptor tyrosine kinases including ERBB3. Our analysis for significantly mutated cancer genes identified 23 candidates, including the cell cycle checkpoint kinase ATM. Copy-number and RNA-seq data analysis identified amplifications and corresponding overexpression of IGF2 in a subset of colon tumours. Furthermore, using RNA-seq data we identified multiple fusion transcripts including recurrent gene fusions involving R-spondin family members RSPO2 and RSPO3 that together occur in 10% of colon tumours. The RSPO fusions were mutually exclusive with APC mutations, indicating that they probably have a role in the activation of Wnt signalling and tumorigenesis. Consistent with this we show that the RSPO fusion proteins were capable of potentiating Wnt signalling. The R-spondin gene fusions and several other gene mutations identified in this study provide new potential opportunities for therapeutic intervention in colon cancer.


Assuntos
Neoplasias do Colo/genética , Fusão Gênica/genética , Genes Neoplásicos/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Trombospondinas/genética , Proteínas Mutadas de Ataxia Telangiectasia , Sequência de Bases , Proteínas de Ciclo Celular/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Variações do Número de Cópias de DNA/genética , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Exoma/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Genes APC , Humanos , Fator de Crescimento Insulin-Like II/genética , Dados de Sequência Molecular , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Receptor ErbB-3/genética , Análise de Sequência de RNA , Transdução de Sinais/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas Wnt/metabolismo
18.
Nature ; 486(7402): 266-70, 2012 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-22699621

RESUMO

Pancreatic ductal adenocarcinoma (PDA) remains a lethal malignancy despite much progress concerning its molecular characterization. PDA tumours harbour four signature somatic mutations in addition to numerous lower frequency genetic events of uncertain significance. Here we use Sleeping Beauty (SB) transposon-mediated insertional mutagenesis in a mouse model of pancreatic ductal preneoplasia to identify genes that cooperate with oncogenic Kras(G12D) to accelerate tumorigenesis and promote progression. Our screen revealed new candidate genes for PDA and confirmed the importance of many genes and pathways previously implicated in human PDA. The most commonly mutated gene was the X-linked deubiquitinase Usp9x, which was inactivated in over 50% of the tumours. Although previous work had attributed a pro-survival role to USP9X in human neoplasia, we found instead that loss of Usp9x enhances transformation and protects pancreatic cancer cells from anoikis. Clinically, low USP9X protein and messenger RNA expression in PDA correlates with poor survival after surgery, and USP9X levels are inversely associated with metastatic burden in advanced disease. Furthermore, chromatin modulation with trichostatin A or 5-aza-2'-deoxycytidine elevates USP9X expression in human PDA cell lines, indicating a clinical approach for certain patients. The conditional deletion of Usp9x cooperated with Kras(G12D) to accelerate pancreatic tumorigenesis in mice, validating their genetic interaction. We propose that USP9X is a major tumour suppressor gene with prognostic and therapeutic relevance in PDA.


Assuntos
Carcinoma Ductal Pancreático/enzimologia , Neoplasias Pancreáticas/enzimologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Animais , Anoikis/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Endopeptidases , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células U937
19.
Nature ; 482(7386): 529-33, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22343890

RESUMO

Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies.


Assuntos
Evolução Clonal/genética , Meduloblastoma/genética , Meduloblastoma/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Animais , Ilhas de CpG/genética , Metilação de DNA , Elementos de DNA Transponíveis/genética , Modelos Animais de Doenças , Genes p53/genética , Mutação em Linhagem Germinativa/genética , Humanos , Síndrome de Li-Fraumeni/complicações , Síndrome de Li-Fraumeni/genética , Meduloblastoma/complicações , Camundongos , Mutagênese Insercional , Taxa de Sobrevida
20.
Nature ; 469(7331): 539-42, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21248752

RESUMO

The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ∼3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A), JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodelling complex gene PBRM1 (ref. 4) as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.


Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Neoplasias Pancreáticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA