Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 155(3): 552-66, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24243015

RESUMO

Context-specific molecular vulnerabilities that arise during tumor evolution represent an attractive intervention target class. However, the frequency and diversity of somatic lesions detected among lung tumors can confound efforts to identify these targets. To confront this challenge, we have applied parallel screening of chemical and genetic perturbations within a panel of molecularly annotated NSCLC lines to identify intervention opportunities tightly linked to molecular response indicators predictive of target sensitivity. Anchoring this analysis on a matched tumor/normal cell model from a lung adenocarcinoma patient identified three distinct target/response-indicator pairings that are represented with significant frequencies (6%-16%) in the patient population. These include NLRP3 mutation/inflammasome activation-dependent FLIP addiction, co-occurring KRAS and LKB1 mutation-driven COPI addiction, and selective sensitivity to a synthetic indolotriazine that is specified by a seven-gene expression signature. Target efficacies were validated in vivo, and mechanism-of-action studies informed generalizable principles underpinning cancer cell biology.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Indóis/farmacologia , Neoplasias Pulmonares/metabolismo , Triazinas/farmacologia , Animais , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Transporte , Linhagem Celular Tumoral , Proteína Coatomer/metabolismo , Feminino , Genes ras , Xenoenxertos , Humanos , Neoplasias Pulmonares/patologia , Lisossomos/metabolismo , Camundongos , Terapia de Alvo Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transplante de Neoplasias , Fosforilação Oxidativa
2.
Int J Cancer ; 141(3): 614-620, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28445609

RESUMO

Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of mortality in lung cancer patients. NSCLC is often associated with resistance to chemotherapeutics and together with rapid metastatic spread, results in limited treatment options and poor patient survival. NSCLCs are heterogeneous, and consist of epithelial and mesenchymal NSCLC cells. Mesenchymal NSCLC cells are thought to be responsible for the chemoresistance phenotype, but if and how this phenotype can be transferred to other NSCLC cells is currently not known. We hypothesised that small extracellular vesicles, exosomes, secreted by mesenchymal NSCLC cells could potentially transfer the chemoresistance phenotype to surrounding epithelial NSCLC cells. To explore this possibility, we used a unique human bronchial epithelial cell (HBEC) model in which the parental cells were transformed from an epithelial to mesenchymal phenotype by introducing oncogenic alterations common in NSCLC. We found that exosomes derived from the oncogenically transformed, mesenchymal HBECs could transfer chemoresistance to the parental, epithelial HBECs and increase ZEB1 mRNA, a master EMT transcription factor, in the recipient cells. Additionally, we demonstrate that exosomes from mesenchymal, but not epithelial HBECs contain the ZEB1 mRNA, thereby providing a potential mechanism for the induction of a mesenchymal phenotype in recipient cells. Together, this work demonstrates for the first time that exosomes derived from mesenchymal, oncogenically transformed lung cells can transfer chemoresistance and mesenchymal phenotypes to recipient cells, likely via the transfer of ZEB1 mRNA in exosomes.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Exossomos/patologia , Neoplasias Pulmonares/patologia , Mesoderma/patologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células/efeitos dos fármacos , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Células Tumorais Cultivadas
3.
Proc Natl Acad Sci U S A ; 111(41): 14788-93, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267614

RESUMO

Aggressive neuroendocrine lung cancers, including small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), represent an understudied tumor subset that accounts for approximately 40,000 new lung cancer cases per year in the United States. No targeted therapy exists for these tumors. We determined that achaete-scute homolog 1 (ASCL1), a transcription factor required for proper development of pulmonary neuroendocrine cells, is essential for the survival of a majority of lung cancers (both SCLC and NSCLC) with neuroendocrine features. By combining whole-genome microarray expression analysis performed on lung cancer cell lines with ChIP-Seq data designed to identify conserved transcriptional targets of ASCL1, we discovered an ASCL1 target 72-gene expression signature that (i) identifies neuroendocrine differentiation in NSCLC cell lines, (ii) is predictive of poor prognosis in resected NSCLC specimens from three datasets, and (iii) represents novel "druggable" targets. Among these druggable targets is B-cell CLL/lymphoma 2, which when pharmacologically inhibited stops ASCL1-dependent tumor growth in vitro and in vivo and represents a proof-of-principle ASCL1 downstream target gene. Analysis of downstream targets of ASCL1 represents an important advance in the development of targeted therapy for the neuroendocrine class of lung cancers, providing a significant step forward in the understanding and therapeutic targeting of the molecular vulnerabilities of neuroendocrine lung cancer.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem da Célula , Tumores Neuroendócrinos/genética , Oncogenes , Carcinoma de Pequenas Células do Pulmão/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Imunoprecipitação da Cromatina , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Tumores Neuroendócrinos/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia
4.
Proc Natl Acad Sci U S A ; 110(16): 6524-9, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23553831

RESUMO

Small-cell lung cancer and other aggressive neuroendocrine cancers are often associated with early dissemination and frequent metastases. We demonstrate that neurogenic differentiation 1 (NeuroD1) is a regulatory hub securing cross talk among survival and migratory-inducing signaling pathways in neuroendocrine lung carcinomas. We find that NeuroD1 promotes tumor cell survival and metastasis in aggressive neuroendocrine lung tumors through regulation of the receptor tyrosine kinase tropomyosin-related kinase B (TrkB). Like TrkB, the prometastatic signaling molecule neural cell adhesion molecule (NCAM) is a downstream target of NeuroD1, whose impaired expression mirrors loss of NeuroD1. TrkB and NCAM may be therapeutic targets for aggressive neuroendocrine cancers that express NeuroD1.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Neoplasias Pulmonares/fisiopatologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Receptor trkB/metabolismo , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Análise de Variância , Animais , Carbazóis , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Primers do DNA/genética , Furanos , Humanos , Immunoblotting , Imunoprecipitação , Luciferases , Neoplasias Pulmonares/metabolismo , Camundongos , Análise em Microsséries , Plasmídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Carcinoma de Pequenas Células do Pulmão/metabolismo
5.
Commun Biol ; 6(1): 68, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653467

RESUMO

Despite significant therapeutic advances, lung cancer remains the leading cause of cancer-related death worldwide1. Non-small cell lung cancer (NSCLC) patients have a very poor overall five-year survival rate of only 10-20%. Currently, TNM staging is the gold standard for predicting overall survival and selecting optimal initial treatment options for NSCLC patients, including those with curable stages of disease. However, many patients with locoregionally-confined NSCLC relapse and die despite curative-intent interventions, indicating a need for intensified, individualised therapies. Epithelial-to-mesenchymal transition (EMT), the phenotypic depolarisation of epithelial cells to elongated, mesenchymal cells, is associated with metastatic and treatment-refractive cancer. We demonstrate here that EMT-induced protein changes in small extracellular vesicles are detectable in NSCLC patients and have prognostic significance. Overall, this work describes a novel prognostic biomarker signature that identifies potentially-curable NSCLC patients at risk of developing metastatic NSCLC, thereby enabling implementation of personalised treatment decisions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Prognóstico , Recidiva Local de Neoplasia , Vesículas Extracelulares/metabolismo , Transição Epitelial-Mesenquimal/genética
6.
Carcinogenesis ; 33(9): 1639-46, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22678114

RESUMO

Although cyclooxygenase-2 (COX-2) inhibitors, such as the late stage development drug apricoxib, exhibit antitumor activity, their mechanisms of action have not been fully defined. In this study, we characterized the mechanisms of action of apricoxib in HT29 colorectal carcinoma. Apricoxib was weakly cytotoxic toward naive HT29 cells in vitro but inhibited tumor growth markedly in vivo. Pharmacokinetic analyses revealed that in vivo drug levels peaked at 2-4 µM and remained sufficient to completely inhibit prostaglandin E(2) production, but failed to reach concentrations cytotoxic for HT29 cells in monolayer culture. Despite this, apricoxib significantly inhibited tumor cell proliferation and induced apoptosis without affecting blood vessel density, although it did promote vascular normalization. Strikingly, apricoxib treatment induced a dose-dependent reversal of epithelial-mesenchymal transition (EMT), as shown by robust upregulation of E-cadherin and the virtual disappearance of vimentin and ZEB1 protein expression. In vitro, either anchorage-independent growth conditions or forced EMT sensitized HT29 and non-small cell lung cancer cells to apricoxib by 50-fold, suggesting that the occurrence of EMT may actually increase the dependence of colon and lung carcinoma cells on COX-2. Taken together, these data suggest that acquisition of mesenchymal characteristics sensitizes carcinoma cells to apricoxib resulting in significant single-agent antitumor activity.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Transição Epitelial-Mesenquimal , Pirróis/farmacologia , Sulfonamidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dinoprostona/biossíntese , Feminino , Células HT29 , Humanos , Camundongos , Camundongos Nus , Fator A de Crescimento do Endotélio Vascular/fisiologia
7.
Genes Chromosomes Cancer ; 49(8): 688-98, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20544843

RESUMO

Asbestos-related lung cancer accounts for 4-12% of all lung cancers worldwide. Since putative mechanisms of carcinogenesis differ between asbestos and tobacco induced lung cancers, tumors induced by the two agents may be genetically distinct. To identify gene expression biomarkers associated with asbestos-related lung tumorigenicity we performed gene expression array analysis on tumors of 36 patients with primary lung adenocarcinoma, comparing 12 patients with lung asbestos body counts above levels associated with urban dwelling (ARLC-AC: asbestos-related lung cancer-adenocarcinoma) with 24 patients with no asbestos bodies (NARLC-AC: non-asbestos related lung cancer-adenocarcinoma). Genes differentially expressed between ARLC-AC and NARLC-AC were identified on fold change and P value, and then prioritized using gene ontology. Candidates included ZNRF3, ADAM28, PPP1CA, IRF6, RAB3D, and PRDX1. Expression of these six genes was technically and biologically replicated by qRT-PCR in the training set and biologically validated in three independent test sets. ADAM28, encoding a disintegrin and metalloproteinase domain protein that interacts with integrins, was consistently upregulated in ARLC across all four datasets. Further studies are being designed to investigate the possible role of this gene in asbestos lung tumorigenicity, its potential utility as a marker of asbestos related lung cancer for purposes of causal attribution, and its potential as a treatment target for lung cancers arising in asbestos exposed persons.


Assuntos
Proteínas ADAM/genética , Adenocarcinoma/induzido quimicamente , Amianto/efeitos adversos , Carcinógenos , Neoplasias Pulmonares/induzido quimicamente , Adenocarcinoma/genética , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Masculino , Exposição Ocupacional , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Am J Epidemiol ; 169(7): 802-14, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19240225

RESUMO

Lung cancer is the most common cancer worldwide. Polymorphisms in genes associated with carcinogen metabolism may modulate risk of disease. Glutathione S-transferase pi (GSTP1) detoxifies polycyclic aromatic hydrocarbons found in cigarette smoke and is the most highly expressed glutathione S-transferase in lung tissue. A polymorphism in the GSTP1 gene, an A-to-G transition in exon 5 (Ile105Val, 313A --> 313G), results in lower activity among individuals who carry the valine allele. The authors present a meta- and a pooled analysis of case-control studies that examined the association between this polymorphism in GSTP1 and lung cancer risk (27 studies, 8,322 cases and 8,844 controls and 15 studies, 4,282 cases and 5,032 controls, respectively). Overall, the meta-analysis found no significant association between lung cancer risk and the GSTP1 exon 5 polymorphism. In the pooled analysis, there was an overall association (odds ratio = 1.11, 95% confidence interval: 1.03, 1.21) between lung cancer and carriage of the GSTP1 Val/Val or Ile/Val genotype compared with those carrying the Ile/Ile genotype. Increased risk varied by histologic type in Asians. There appears to be evidence for interaction between amount of smoking, the GSTP1 exon 5 polymorphism, and risk of lung cancer in whites.


Assuntos
Glutationa S-Transferase pi/genética , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , Povo Asiático/genética , Genótipo , Humanos , Neoplasias Pulmonares/etnologia , Fumar , População Branca/genética
9.
Respir Res ; 10: 81, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19723343

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients.Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR) if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples.Class comparison identified 98 differentially expressed genes (p < 0.01). Fifty-one of those genes had been previously evaluated in differentiation between normal and severe emphysema lung. qRT-PCR confirmed the direction of change in expression in 29 of the 51 genes and 11 of those validated, remaining significant at p < 0.05. Biological replication in an independent cohort confirmed the altered expression of eight genes, with seven genes differentially expressed by greater than 1.3 fold, identifying these as candidate determinants of emphysema severity.Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.


Assuntos
Perfilação da Expressão Gênica , Pulmão/metabolismo , Proteínas/análise , Enfisema Pulmonar/diagnóstico , Enfisema Pulmonar/metabolismo , Índice de Gravidade de Doença , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Mol Oncol ; 13(7): 1503-1518, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31044505

RESUMO

Drugs such as gemcitabine that increase replication stress are effective chemotherapeutics in a range of cancer settings. These drugs effectively block replication and promote DNA damage, triggering a cell cycle checkpoint response through the ATR-CHK1 pathway. Inhibiting this signalling pathway sensitises cells to killing by replication stress-inducing drugs. Here, we investigated the effect of low-level replication stress induced by low concentrations (> 0.2 mm) of the reversible ribonucleotide reductase inhibitor hydroxyurea (HU), which slows S-phase progression but has little effect on cell viability or proliferation. We demonstrate that HU effectively synergises with CHK1, but not ATR inhibition, in > 70% of melanoma and non-small-cell lung cancer cells assessed, resulting in apoptosis and complete loss of proliferative potential in vitro and in vivo. Normal fibroblasts and haemopoietic cells retain viability and proliferative potential following exposure to CHK1 inhibitor plus low doses of HU, but normal cells exposed to CHK1 inhibitor combined with submicromolar concentrations of gemcitabine exhibited complete loss of proliferative potential. The effects of gemcitabine on normal tissue correlate with irreversible ATR-CHK1 pathway activation, whereas low doses of HU reversibly activate CHK1 independently of ATR. The combined use of CHK1 inhibitor and subclinical HU also triggered an inflammatory response involving the recruitment of macrophages in vivo. These data indicate that combining CHK1 inhibitor with subclinical HU is superior to combination with gemcitabine, as it provides equal anticancer efficacy but with reduced normal tissue toxicity. These data suggest a significant proportion of melanoma and lung cancer patients could benefit from treatment with this drug combination.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Hidroxiureia/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Desoxicitidina/efeitos adversos , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Progressão da Doença , Feminino , Humanos , Hidroxiureia/efeitos adversos , Hidroxiureia/uso terapêutico , Neoplasias Pulmonares/patologia , Melanoma/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Gencitabina
11.
Clin Cancer Res ; 13(10): 2946-54, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17504995

RESUMO

PURPOSE: Improving outcomes for early-stage lung cancer is a major research focus at present because a significant proportion of stage I patients develop recurrent disease within 5 years of curative-intent lung resection. Within tumor stage groups, conventional prognostic indicators currently fail to predict relapse accurately. EXPERIMENTAL DESIGN: To identify a gene signature predictive of recurrence in primary lung adenocarcinoma, we analyzed gene expression profiles in a training set of 48 node-negative tumors (stage I-II), comparing tumors from cases who remained disease-free for a minimum of 36 months with those from cases whose disease recurred within 18 months of complete resection. RESULTS: Cox proportional hazards modeling with leave-one-out cross-validation identified a 54-gene signature capable of predicting risk of recurrence in two independent validation cohorts of 55 adenocarcinomas [log-rank P=0.039; hazard ratio (HR), 2.2; 95% confidence interval (95% CI), 1.1-4.7] and 40 adenocarcinomas (log-rank P=0.044; HR, 3.3; 95% CI, 1.4-7.9). Kaplan-Meier log-rank analysis found that predicted poor-outcome groups had significantly shorter survival, and furthermore, the signature predicted outcome independently of conventional indicators of tumor stage and node stage. In a subset of earliest stage adenocarcinomas, generally expected to have good outcome, the signature predicted samples with significantly poorer survival. CONCLUSIONS: We describe a 54-gene signature that predicts the risk of recurrent disease independently of tumor stage and which therefore has potential to refine clinical prognosis for patients undergoing resection for primary adenocarcinoma of the lung.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Neoplasias Pulmonares/patologia , Recidiva Local de Neoplasia/diagnóstico , Idoso , Feminino , Genes Neoplásicos , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Risco
12.
Cancer Res ; 78(8): 1986-1999, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29431637

RESUMO

Epithelial-to-mesenchymal transition (EMT) is organized in cancer cells by a set of key transcription factors, but the significance of this process is still debated, including in non-small cell lung cancer (NSCLC). Here, we report increased expression of the EMT-inducing transcription factor Snail in premalignant pulmonary lesions, relative to histologically normal pulmonary epithelium. In immortalized human pulmonary epithelial cells and isogenic derivatives, we documented Snail-dependent anchorage-independent growth in vitro and primary tumor growth and metastatic behavior in vivo Snail-mediated transformation relied upon silencing of the tumor-suppressive RNA splicing regulatory protein ESRP1. In clinical specimens of NSCLC, ESRP1 loss was documented in Snail-expressing premalignant pulmonary lesions. Mechanistic investigations showed that Snail drives malignant progression in an ALDH+CD44+CD24- pulmonary stem cell subset in which ESRP1 and stemness-repressing microRNAs are inhibited. Collectively, our results show how ESRP1 loss is a critical event in lung carcinogenesis, and they identify new candidate directions for targeted therapy of NSCLC.Significance: This study defines a Snail-ESRP1 cancer axis that is crucial for human lung carcinogenesis, with implications for new intervention strategies and translational opportunities. Cancer Res; 78(8); 1986-99. ©2018 AACR.


Assuntos
Transformação Celular Neoplásica/genética , Inativação Gênica , Pulmão/patologia , Proteínas de Ligação a RNA/genética , Fatores de Transcrição da Família Snail/fisiologia , Animais , Linhagem Celular Transformada , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Modelos Animais
13.
Cancer Res ; 77(11): 3070-3081, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28377453

RESUMO

Oncogene-specific changes in cellular signaling have been widely observed in lung cancer. Here, we investigated how these alterations could affect signaling heterogeneity and suggest novel therapeutic strategies. We compared signaling changes across six human bronchial epithelial cell (HBEC) strains that were systematically transformed with various combinations of TP53, KRAS, and MYC-oncogenic alterations commonly found in non-small cell lung cancer (NSCLC). We interrogated at single-cell resolution how these alterations could affect classic readouts (ß-CATENIN, SMAD2/3, phospho-STAT3, P65, FOXO1, and phospho-ERK1/2) of key pathways commonly affected in NSCLC. All three oncogenic alterations were required concurrently to observe significant signaling changes, and significant heterogeneity arose in this condition. Unexpectedly, we found two mutually exclusive altered subpopulations: one with STAT3 upregulation and another with SMAD2/3 downregulation. Treatment with a STAT3 inhibitor eliminated the upregulated STAT3 subpopulation, but left a large surviving subpopulation with downregulated SMAD2/3. A bioinformatics search identified BCL6, a gene downstream of SMAD2/3, as a novel pharmacologically accessible target of our transformed HBECs. Combination treatment with STAT3 and BCL6 inhibitors across a panel of NSCLC cell lines and in xenografted tumors significantly reduced tumor cell growth. We conclude that BCL6 is a new therapeutic target in NSCLC and combination therapy that targets multiple vulnerabilities (STAT3 and BCL6) downstream of common oncogenes, and tumor suppressors may provide a potent way to defeat intratumor heterogeneity. Cancer Res; 77(11); 3070-81. ©2017 AACR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Terapia Combinada/métodos , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Humanos , Transdução de Sinais , Transfecção
14.
Cancer Res ; 77(1): 187-197, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27821484

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-associated deaths worldwide. Given the efficacy of membrane proteins as therapeutic targets in human malignancies, we examined cell-surface receptors that may act as drivers of lung tumorigenesis. Here, we report that the PROTOCADHERIN PCDH7 is overexpressed frequently in NSCLC tumors where this event is associated with poor clinical outcome. PCDH7 overexpression synergized with EGFR and KRAS to induce MAPK signaling and tumorigenesis. Conversely, PCDH7 depletion suppressed ERK activation, sensitized cells to MEK inhibitors, and reduced tumor growth. PCDH7 potentiated ERK signaling by facilitating interaction of protein phosphatase PP2A with its potent inhibitor, the SET oncoprotein. By establishing an oncogenic role for PCDH7 in lung tumorigenesis, our results provide a rationale to develop novel PCDH7 targeting therapies that act at the cell surface of NSCLC cells to compromise their growth. Cancer Res; 77(1); 187-97. ©2016 AACR.


Assuntos
Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Transformação Celular Neoplásica/metabolismo , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Proteínas de Ligação a DNA , Receptores ErbB/metabolismo , Xenoenxertos , Chaperonas de Histonas/metabolismo , Humanos , Imunoprecipitação , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Reação em Cadeia da Polimerase , Modelos de Riscos Proporcionais , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Protocaderinas , Transdução de Sinais/fisiologia , Análise de Sobrevida , Análise Serial de Tecidos , Fatores de Transcrição/metabolismo
15.
Cancer Prev Res (Phila) ; 10(9): 514-524, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28754664

RESUMO

Lung cancers are documented to have remarkable intratumoral genetic heterogeneity. However, little is known about the heterogeneity of biophysical properties, such as cell motility, and its relationship to early disease pathogenesis and micrometastatic dissemination. In this study, we identified and selected a subpopulation of highly migratory premalignant airway epithelial cells that were observed to migrate through microscale constrictions at up to 100-fold the rate of the unselected immortalized epithelial cell lines. This enhanced migratory capacity was found to be Rac1-dependent and heritable, as evidenced by maintenance of the phenotype through multiple cell divisions continuing more than 8 weeks after selection. The morphology of this lung epithelial subpopulation was characterized by increased cell protrusion intensity. In a murine model of micrometastatic seeding and pulmonary colonization, the motility-selected premalignant cells exhibit both enhanced survival in short-term assays and enhanced outgrowth of premalignant lesions in longer-term assays, thus overcoming important aspects of "metastatic inefficiency." Overall, our findings indicate that among immortalized premalignant airway epithelial cell lines, subpopulations with heritable motility-related biophysical properties exist, and these may explain micrometastatic seeding occurring early in the pathogenesis of lung cancer. Understanding, targeting, and preventing these critical biophysical traits and their underlying molecular mechanisms may provide a new approach to prevent metastatic behavior. Cancer Prev Res; 10(9); 514-24. ©2017 AACRSee related editorial by Hynds and Janes, p. 491.


Assuntos
Brônquios/citologia , Movimento Celular/genética , Proliferação de Células/genética , Células Epiteliais/patologia , Neoplasias Pulmonares/genética , Animais , Brônquios/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Organismos Livres de Patógenos Específicos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rac1 de Ligação ao GTP/metabolismo
16.
J Thorac Oncol ; 11(3): 346-360, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26725182

RESUMO

INTRODUCTION: The human secretin gene (SCT) encodes secretin, a hormone with limited tissue distribution. Analysis of the 450k methylation array data in The Cancer Genome Atlas (TCGA) indicated that the SCT promoter region is differentially hypermethylated in lung cancer. Our purpose was to validate SCT methylation as a potential biomarker for lung cancer. METHODS: We analyzed data from TCGA and developed and applied SCT-specific bisulfite DNA sequencing and quantitative methylation-specific polymerase chain reaction assays. RESULTS: The analyses of TCGA 450K data for 801 samples showed that SCT hypermethylation has an area under the curve (AUC) value greater than 0.98 that can be used to distinguish lung adenocarcinomas or squamous cell carcinomas from nonmalignant lung tissue. Bisulfite sequencing of lung cancer cell lines and normal blood cells allowed us to confirm that SCT methylation is highly discriminative. By applying a quantitative methylation-specific polymerase chain reaction assay, we found that SCT hypermethylation is frequently detected in all major subtypes of malignant non-small cell lung cancer (AUC = 0.92, n = 108) and small cell lung cancer (AUC = 0.93, n = 40) but is less frequent in lung carcinoids (AUC = 0.54, n = 20). SCT hypermethylation appeared in samples of lung carcinoma in situ during multistage pathogenesis and increased in invasive samples. Further analyses of TCGA 450k data showed that SCT hypermethylation is highly discriminative in most other types of malignant tumors but less frequent in low-grade malignant tumors. The only normal tissue with a high level of methylation was the placenta. CONCLUSIONS: Our findings demonstrated that SCT methylation is a highly discriminative biomarker for lung and other malignant tumors, is less frequent in low-grade malignant tumors (including lung carcinoids), and appears at the carcinoma in situ stage.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Metilação de DNA , Neoplasias Pulmonares/genética , Secretina/genética , Linhagem Celular Tumoral , Ilhas de CpG , Regulação Neoplásica da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Análise de Sequência de DNA
17.
J Clin Invest ; 126(9): 3219-35, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27500490

RESUMO

Increased expression of zinc finger E-box binding homeobox 1 (ZEB1) is associated with tumor grade and metastasis in lung cancer, likely due to its role as a transcription factor in epithelial-to-mesenchymal transition (EMT). Here, we modeled malignant transformation in human bronchial epithelial cells (HBECs) and determined that EMT and ZEB1 expression are early, critical events in lung cancer pathogenesis. Specific oncogenic mutations in TP53 and KRAS were required for HBECs to engage EMT machinery in response to microenvironmental (serum/TGF-ß) or oncogenetic (MYC) factors. Both TGF-ß- and MYC-induced EMT required ZEB1, but engaged distinct TGF-ß-dependent and vitamin D receptor-dependent (VDR-dependent) pathways, respectively. Functionally, we found that ZEB1 causally promotes malignant progression of HBECs and tumorigenicity, invasion, and metastases in non-small cell lung cancer (NSCLC) lines. Mechanistically, ZEB1 expression in HBECs directly repressed epithelial splicing regulatory protein 1 (ESRP1), leading to increased expression of a mesenchymal splice variant of CD44 and a more invasive phenotype. In addition, ZEB1 expression in early stage IB primary NSCLC correlated with tumor-node-metastasis stage. These findings indicate that ZEB1-induced EMT and associated molecular changes in ESRP1 and CD44 contribute to early pathogenesis and metastatic potential in established lung cancer. Moreover, TGF-ß and VDR signaling and CD44 splicing pathways associated with ZEB1 are potential EMT chemoprevention and therapeutic targets in NSCLC.


Assuntos
Transição Epitelial-Mesenquimal , Receptores de Hialuronatos/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/metabolismo , Linhagem Celular , Transformação Celular Neoplásica , Feminino , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microcirculação , Invasividade Neoplásica , Metástase Neoplásica , Fenótipo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Calcitriol/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
18.
Cancer Prev Res (Phila) ; 9(1): 43-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26511490

RESUMO

In order to identify new cancer-associated metabolites that may be useful for early detection of lung cancer, we performed a global metabolite profiling of a non-small cell lung cancer (NSCLC) line and immortalized normal lung epithelial cells from the same patient. Among several metabolites with significant cancer/normal differences, we identified a unique metabolic compound, N-acetylaspartate (NAA), in cancer cells-undetectable in normal lung epithelium. NAA's cancer-specific detection was validated in additional cancer and control lung cells as well as selected NSCLC patient tumors and control tissues. NAA's cancer specificity was further supported in our analysis of NAA synthetase (gene symbol: NAT8L) gene expression levels in The Cancer Genome Atlas: elevated NAT8L expression in approximately 40% of adenocarcinoma and squamous cell carcinoma cases (N = 577), with minimal expression in all nonmalignant lung tissues (N = 74). We then showed that NAT8L is functionally involved in NAA production of NSCLC cells through siRNA-mediated suppression of NAT8L, which caused selective reduction of intracellular and secreted NAA. Our cell culture experiments also indicated that NAA biosynthesis in NSCLC cells depends on glutamine availability. For preliminary evaluation of NAA's clinical potential as a circulating biomarker, we developed a sensitive NAA blood assay and found that NAA blood levels were elevated in 46% of NSCLC patients (N = 13) in comparison with age-matched healthy controls (N = 21) among individuals aged 55 years or younger. Taken together, these results indicate that NAA is produced specifically in NSCLC tumors through NAT8L overexpression, and its extracellular secretion can be detected in blood. Cancer Prev Res; 9(1); 43-52. ©2015 AACR.


Assuntos
Acetiltransferases/sangue , Ácido Aspártico/análogos & derivados , Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Acetiltransferases/metabolismo , Adulto , Idoso , Ácido Aspártico/sangue , Barreira Hematoencefálica , Carcinoma Pulmonar de Células não Pequenas/sangue , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Glutamina/metabolismo , Humanos , Neoplasias Pulmonares/sangue , Masculino , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo , Análise de Sequência de RNA
20.
PLoS One ; 10(8): e0134842, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26244663

RESUMO

Lung cancer is caused by combinations of diverse genetic mutations. Here, to understand the relevance of nuclear receptors (NRs) in the oncogene-associated lung cancer pathogenesis, we investigated the expression profile of the entire 48 NR members by using QPCR analysis in a panel of human bronchial epithelial cells (HBECs) that included precancerous and tumorigenic HBECs harboring oncogenic K-rasV12 and/or p53 alterations. The analysis of the profile revealed that oncogenic alterations accompanied transcriptional changes in the expression of 19 NRs in precancerous HBECs and 15 NRs according to the malignant progression of HBECs. Amongst these, peroxisome proliferator-activated receptor gamma (PPARγ), a NR chosen as a proof-of-principle study, showed increased expression in precancerous HBECs, which was surprisingly reversed when these HBECs acquired full in vivo tumorigenicity. Notably, PPARγ activation by thiazolidinedione (TZD) treatment reversed the increased expression of pro-inflammatory cyclooxygenase 2 (COX2) in precancerous HBECs. In fully tumorigenic HBECs with inducible expression of PPARγ, TZD treatments inhibited tumor cell growth, clonogenecity, and cell migration in a PPARγ-sumoylation dependent manner. Mechanistically, the sumoylation of liganded-PPARγ decreased COX2 expression and increased 15-hydroxyprostaglandin dehydrogenase expression. This suggests that ligand-mediated sumoylation of PPARγ plays an important role in lung cancer pathogenesis by modulating prostaglandin metabolism.


Assuntos
Transformação Celular Neoplásica/genética , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Neoplasias Pulmonares/genética , Receptores Citoplasmáticos e Nucleares/genética , Brônquios/citologia , Linhagem Celular Transformada , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Células HEK293 , Humanos , Immunoblotting , Neoplasias Pulmonares/metabolismo , Mutação , PPAR gama/genética , PPAR gama/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sumoilação , Tiazolidinedionas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA