Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 20(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696002

RESUMO

Many burn interventions aim to target the inflammatory response as a means of enhancing healing or limiting hypertrophic scarring. Murine models of human burns have been developed, but the inflammatory response to injury in these models has not been well defined. The aim of this study was to profile inflammatory cell populations and gene expression relative to healing and scarring in a murine model of thermal burns. Cutaneous injuries were created on the dorsal region of C57Bl/6 mice using a heated metal rod. Animals were euthanized at selected time points over ten weeks, with the lesions evaluated using macroscopic measurements, histology, immunofluorescent histochemistry and quantitative PCR. The burn method generated a reproducible, partial-thickness injury that healed within two weeks through both contraction and re-epithelialization, in a manner similar to human burns. The injury caused an immediate increase in pro-inflammatory cytokine and chemokine expression, coinciding with an influx of neutrophils, and the disappearance of Langerhans cells and mast cells. This preceded an influx of dendritic cells and macrophages, a quarter of which displayed an inflammatory (M1) phenotype, with both populations peaking at closure. As with human burns, the residual scar increased in size, epidermal and dermal thickness, and mast cell numbers over 10 weeks, but abnormal collagen I-collagen III ratios, fibre organization and macrophage populations resolved 3⁻4 weeks after closure. Characterisation of the inflammatory response in this promising murine burn model will assist future studies of burn complications and aid in the preclinical testing of new anti-inflammatory and anti-scarring therapies.


Assuntos
Queimaduras/patologia , Temperatura Alta , Inflamação/patologia , Pele/patologia , Animais , Cicatriz/patologia , Modelos Animais de Doenças , Feminino , Fibrose , Regulação da Expressão Gênica , Inflamação/genética , Camundongos Endogâmicos C57BL , Reepitelização
2.
Growth Factors ; 36(3-4): 118-140, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-31084274

RESUMO

Receptor tyrosine kinases (RTKs) are essential components of cell communication pathways utilized from the embryonic to adult stages of life. These transmembrane receptors bind polypeptide ligands, such as growth factors, inducing signalling cascades that control cellular processes such as proliferation, survival, differentiation, motility and inflammation. Many viruses have acquired homologs of growth factors encoded by the hosts that they infect. Production of growth factors during infection allows viruses to exploit RTKs for entry and replication in cells, as well as for host and environmental dissemination. This review describes the genetic diversity amongst virus-derived growth factors and the mechanisms by which RTK exploitation enhances virus survival, then highlights how viral ligands can be used to further understanding of RTK signalling and function during embryogenesis, homeostasis and disease scenarios.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Proteínas Virais/metabolismo , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Virais/genética
3.
BMC Genomics ; 18(1): 39, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056773

RESUMO

BACKGROUND: The GII.4 Sydney 2012 strain of human norovirus (HuNoV) is a pandemic strain that is responsible for the majority of norovirus outbreaks in healthcare settings. The function of the non-structural (NS)1-2 protein from HuNoV is unknown. RESULTS: In silico analysis of human norovirus NS1-2 protein showed that it shares features with the murine NS1-2 protein, including a disordered region, a transmembrane domain and H-box and NC sequence motifs. The proteins also contain caspase cleavage and phosphorylation sites, indicating that processing and phosphorylation may be a conserved feature of norovirus NS1-2 proteins. In this study, RNA transcripts of human and murine norovirus full-length and the disordered region of NS1-2 were transfected into monocytes, and next generation sequencing was used to analyse the transcriptomic profile of cells expressing virus proteins. The profiles were then compared to the transcriptomic profile of MNV-infected cells. CONCLUSIONS: RNAseq analysis showed that NS1-2 proteins from human and murine noroviruses affect multiple immune systems (chemokine, cytokine, and Toll-like receptor signaling) and intracellular pathways (NFκB, MAPK, PI3K-Akt signaling) in murine monocytes. Comparison to the transcriptomic profile of MNV-infected cells indicated the pathways that NS1-2 may affect during norovirus infection.


Assuntos
Regulação Viral da Expressão Gênica , Monócitos/virologia , Norovirus/fisiologia , Transcriptoma , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Infecções por Caliciviridae/virologia , Linhagem Celular , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Camundongos , Filogenia , Conformação Proteica em alfa-Hélice , Transdução de Sinais , Receptores Toll-Like/metabolismo , Proteínas não Estruturais Virais/química
4.
Cell Microbiol ; 12(5): 665-76, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20039877

RESUMO

Orf virus (ORFV) is a zoonotic parapoxvirus that induces acute pustular skin lesions in sheep and humans. ORFV can reinfect its host and the discovery of several secreted immune modulatory factors that include a chemokine-binding protein (CBP) may explain this phenomenon. Dendritic cells (DC) are professional antigen presenting cells that induce adaptive immunity and their recruitment to sites of infection in skin and migration to peripheral lymph nodes is critically dependent on inflammatory and constitutive chemokine gradients respectively. Here we examined whether ORFV-CBP could disable these gradients using mouse models. Previously we established that ORFV-CBP bound murine inflammatory chemokines with high affinity and here we show that this binding spectrum extends to constitutive chemokines CCL19 and CCL21. Using cell-based chemotaxis assays, ORFV-CBP inhibited the movement of both immature and mature DC in response to these inflammatory and constitutive chemokines respectively. Moreover in C57BL/6 mice, intradermally injected CBP potently inhibited the recruitment of blood-derived DC to lipopolysaccharide-induced sites of skin inflammation and inhibited the migration of ex vivo CpG-activated DC to inguinal lymph nodes. Finally we showed that ORFV-CBP completely inhibited T responsiveness in the inguinal lymph nodes using intradermally injected DC pulsed with ovalbumin peptide and transfused transgenic T cells.


Assuntos
Células Dendríticas/imunologia , Linfonodos/imunologia , Vírus do Orf/imunologia , Vírus do Orf/patogenicidade , Pele/imunologia , Proteínas Virais/fisiologia , Fatores de Virulência/fisiologia , Animais , Movimento Celular , Quimiocinas/antagonistas & inibidores , Quimiocinas/metabolismo , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteínas Virais/imunologia , Fatores de Virulência/imunologia
5.
F1000Res ; 8: 190, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31448098

RESUMO

Lung cancer drug development requires screening in animal models. We aimed to develop orthotopic models of human non-small lung cancer using A549 and H3122 cells delivered by tail vein injection. This procedure has been used previously for a mouse lung cancer (Lewis lung carcinoma) and as a model of human breast cancer metastasis to lung. We report that the procedure led to poor animal condition 7-8 weeks after injection, and produced lesions in the lungs visible at necropsy but we were unable identify individual cancer cells using immunohistochemistry. We conclude that if this method is to produce a model that can be used in drug experiments, improvements are required for cancer cell detection post mortem, such as by using of a fluorescently tagged human lung cancer cell line.


Assuntos
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Transplante de Neoplasias , Células A549 , Animais , Modelos Animais de Doenças , Humanos , Camundongos
6.
Front Microbiol ; 10: 1421, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293551

RESUMO

Parapoxvirus of red deer in New Zealand (PVNZ) is a species of the Parapoxvirus genus that causes pustular dermatitis. We identified a cluster of genes in PVNZ that encode three unique chemokine-binding proteins (CBPs) namely ORF112.0, ORF112.3 and ORF112.6. Chemokines are a large family of molecules that direct cell trafficking to sites of inflammation and through lymphatic organs. The PVNZ-CBPs were analyzed by surface plasmon resonance against a broad spectrum of CXC, CC, XC and CX3C chemokines and were found to differ in their specificity and binding affinity. ORF112.0 interacted with chemokines from the CXC, CC and XC classes of chemokines with nM affinities. The ORF112.3 showed a preference for CXC chemokines, while ORF112.6 showed pM affinity binding for CC chemokines. Structural modeling analysis showed alterations in the chemokine binding sites of the CBPs, although the core structure containing two ß-sheets and three α-helices being conserved with the other parapoxvirus CBPs. Chemotaxis assays using neutrophils and monocytes revealed inhibitory impact of the CBPs on cell migration. Our results suggest that the PVNZ-CBPs are likely to have evolved through a process of gene duplication and divergence, and may have a role in suppressing inflammation and the anti-viral immune response.

7.
Expert Rev Vaccines ; 17(9): 833-849, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30173619

RESUMO

INTRODUCTION: Virus-like particle (VLP) vaccines face significant challenges in their translation from laboratory models, to routine clinical administration. While some VLP vaccines thrive and are readily adopted into the vaccination schedule, others are restrained by regulatory obstacles, proprietary limitations, or finding their niche amongst the crowded vaccine market. Often the necessity to supplant an existing vaccination regimen possesses an immediate obstacle for the development of a VLP vaccine, despite any preclinical advantages identified over the competition. Novelty, adaptability and formulation compatibility may prove invaluable in helping place VLP vaccines at the forefront of vaccination technology. AREAS COVERED: The purpose of this review is to outline the diversity of VLP vaccines, VLP-specific immune responses, and to explore how modern formulation and delivery techniques can enhance the clinical relevance and overall success of VLP vaccines. EXPERT COMMENTARY: The role of formation science, with an emphasis on the diversity of immune responses induced by VLP, is underrepresented amongst clinical trials for VLP vaccines. Harnessing such diversity, particularly through the use of combinations of select excipients and adjuvants, will be paramount in the development of VLP vaccines.


Assuntos
Pesquisa Translacional Biomédica/métodos , Vacinação , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Excipientes/química , Humanos , Imunogenicidade da Vacina/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia
8.
PLoS One ; 13(5): e0197223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29763436

RESUMO

Bandaging of limb wounds in horses leads to formation of exuberant granulation tissue (EGT) that retards healing due to protracted inflammation, aberrant vascularisation and delayed epithelialisation. EGT is not observed if wounds are left undressed or when wounds are on the body. A previous study showed that short-term administration of proteins derived from orf virus dampened inflammation and promoted epithelialisation of open wounds in horses. Here, we investigated the impact of orf virus interleukin-10 and vascular endothelial growth factor-E on the development and resolution of EGT. Excisional wounds were created on the forelimb of four horses, and bandages were maintained until full healing to induce EGT formation. Matching body wounds were created to ensure EGT was limited to the limb, and to differentiate the effects of the viral proteins on normal healing and on EGT formation. Viral proteins or the hydrogel vehicle control were administered topically to site-matched wounds at day 1, with repeat administration at day 8. Wound healing and EGT formation were monitored macroscopically. Wound margin samples were harvested at 2, 7 and 14 days, and at full healing, with histology used to observe epithelialisation, immunofluorescence used to detect inflammatory cells, angiogenesis and cell death, and qPCR to measure expression of genes regulating inflammation and angiogenesis. Limb wounds developed EGT, and exhibited slower healing than body wounds. Viral protein treatment did not accelerate healing at either location nor limit EGT formation in limb wounds. Treatment of limb wounds did however increase epithelialisation and angiogenesis, without dampening inflammatory cell infiltration or gene expression. The healed wounds also had less occlusion and death of blood vessels and fewer epidermal rete ridges following viral protein treatment. These findings indicate that the viral protein treatment does not suppress wound inflammation or EGT formation, but does promote vascular and epidermal repair and EGT resolution.


Assuntos
Membro Posterior , Cavalos , Hidrogéis/farmacologia , Interleucina-10/farmacologia , Proteínas Virais/farmacologia , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões , Animais , Membro Posterior/metabolismo , Membro Posterior/patologia , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
9.
Front Microbiol ; 8: 46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28174562

RESUMO

Orf virus (ORFV) is the type species of the Parapoxvirus genus of the family Poxviridae and infects sheep and goats, often around the mouth, resulting in acute pustular skin lesions. ORFV encodes several secreted immunomodulators including a broad-spectrum chemokine binding protein (CBP). Chemokines are a large family of secreted chemotactic proteins that activate and regulate inflammation induced leukocyte recruitment to sites of infection. In this study we investigated the role of CBP in vivo in the context of ORFV infection of sheep. The CBP gene was deleted from ORFV strain NZ7 and infections of sheep used to investigate the effect of CBP on pathogenesis. Animals were either infected with the wild type (wt) virus, CBP-knockout virus or revertant strains. Sheep were infected by scarification on the wool-less area of the hind legs at various doses of virus. The deletion of the CBP gene severely attenuated the virus, as only few papules formed when animals were infected with the CBP-knock-out virus at the highest dose (107 p.f.u). In contrast, large pustular lesions formed on almost all animals infected with the wt and revertant strains at 107 p.f.u. The lesions for the CBP-knock-out virus resolved approximately 5-6 days p.i, at a dose of 107 pfu whereas in animals infected with the wt and revertants at this dose, lesions began to resolve at approximately 10 days p.i. Few pustules developed at the lowest dose of 103 p.f.u. for all viruses. Immunohistochemistry of biopsy skin-tissue from pustules showed that the CBP-knockout virus replicated in all animals at the highest dose and was localized to the skin epithelium while haematoxylin and eosin staining showed histological features of the CBP-knockout virus typical of the parent virus with acanthosis, elongated rete ridges and orthokeratotic hyperkeratosis. MHC-II immunohistochemistry analysis for monocytes and dendritic cells showed greater staining within the papillary dermis of the CBP-knock-out virus compared with the revertant viruses, however this was not the case with the wt where staining was similar. Our results show that the CBP gene encodes a secreted immunodulator that has a critical role in virulence and pathogenesis.

10.
Virus Res ; 213: 230-237, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26732486

RESUMO

Orf virus (ORFV) is a zoonotic parapoxvirus that causes pustular dermatitis of sheep, and occasionally humans. Despite causing sustained infections, ORFV induces only a transient increase in pro-inflammatory signalling and the trafficking of innate immune cells within the skin seems to be impaired. An explanation for this tempered response to ORFV infection may lie in its expression of a homolog of the anti-inflammatory cytokine, interleukin (IL)-10. Using a murine model in which inflammation was induced by bacterial lipopolysaccharide, we examined the effects of the ORFV-IL-10 protein on immune cell trafficking to and from the skin. ORFV-IL-10 limited the recruitment of blood-derived Gr-1(int)/CD11b(int) monocytes, CD11c(+ve)/MHC-II(+ve) dendritic cells and c-kit(+ve)/FcεR1(+ve) mature mast cells into inflamed skin. ORFV-IL-10 also suppressed the activation of CD11c(+ve)/MHC-II(+ve) dendritic cells within the skin, reducing their trafficking to the draining lymph node. These findings suggest that expression of IL-10 by ORFV may contribute to the impaired trafficking of innate immune cells within infected skin.


Assuntos
Células Dendríticas/imunologia , Interleucina-10/metabolismo , Mastócitos/imunologia , Monócitos/imunologia , Vírus do Orf/imunologia , Pele/patologia , Proteínas Virais/metabolismo , Animais , Dermatite/patologia , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Tolerância Imunológica , Lipopolissacarídeos/toxicidade , Camundongos , Pele/virologia
11.
PLoS One ; 11(12): e0168007, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936239

RESUMO

Bovine papular stomatitis virus (BPSV) is a Parapoxvirus that induces acute pustular skin lesions in cattle and is transmissible to humans. Previous studies have shown that BPSV encodes a distinctive chemokine-binding protein (CBP). Chemokines are critically involved in the trafficking of immune cells to sites of inflammation and infected tissue, suggesting that the CBP plays a role in immune evasion by preventing immune cells reaching sites of infection. We hypothesised that the BPSV-CBP binds a wide range of inflammatory chemokines particularly those involved in BPSV skin infection, and inhibits the recruitment of immune cells from the blood into inflamed skin. Molecular analysis of the purified protein revealed that the BPSV-CBP is a homodimeric polypeptide with a MW of 82.4 kDa whilst a comprehensive screen of inflammatory chemokines by surface plasmon resonance showed high-affinity binding to a range of chemokines within the CXC, CC and XC subfamilies. Structural analysis of BPSV-CBP, based on the crystal structure of orf virus CBP, provided a probable explanation for these chemokine specificities at a molecular level. Functional analysis of the BPSV-CBP using transwell migration assays demonstrated that it potently inhibited chemotaxis of murine neutrophils and monocytes in response to CXCL1, CXCL2 as well as CCL2, CCL3 and CCL5 chemokines. In order to examine the effects of CBP in vivo, we used murine skin models to determine its impact on inflammatory cell recruitment such as that observed during BPSV infection. Intradermal injection of BPSV-CBP blocked the influx of neutrophils and monocytes in murine skin in which inflammation was induced with lipopolysaccharide. Furthermore, intradermal injection of BPSV-CBP into injured skin, which more closely mimics BPSV lesions, delayed the influx of neutrophils and reduced the recruitment of MHC-II+ immune cells to the wound bed. Our findings suggest that the CBP could be important in pathogenesis of BPSV infections.


Assuntos
Quimiocinas/metabolismo , Quimiotaxia de Leucócito/fisiologia , Modelos Animais de Doenças , Inflamação/patologia , Monócitos/patologia , Neutrófilos/patologia , Parapoxvirus/metabolismo , Proteínas Virais/fisiologia , Ferimentos e Lesões/patologia , Sequência de Aminoácidos , Animais , Dimerização , Camundongos , Conformação Proteica , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície , Proteínas Virais/química
12.
J Gen Virol ; 90(Pt 6): 1477-1482, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19264645

RESUMO

The parapoxvirus orf virus causes pustular dermatitis in sheep and is transmissible to humans. The virus encodes a secreted chemokine-binding protein (CBP). We examined the ability of this protein to inhibit migration of murine monocytes in response to CC inflammatory chemokines, using chemotaxis assays, and its effects on monocyte recruitment into the skin, using a mouse model in which inflammation was induced with bacterial lipopolysaccharide. CBP was shown to bind murine chemokines CCL2, CCL3 and CCL5 with high affinity by surface plasmon resonance and it completely inhibited chemokine-induced migration of monocytes at a CBP:chemokine molar ratio of 4:1. In the mouse, low levels of CBP potently inhibited the recruitment of Gr-1+/CD11b+ monocytes to the site of inflammation in the skin but had little effect on neutrophil recruitment, suggesting that this factor plays a role in disrupting chemokine-induced recruitment of specific immune cell types to infection sites.


Assuntos
Monócitos/imunologia , Vírus do Orf/patogenicidade , Dermatopatias Virais/virologia , Proteínas Virais/fisiologia , Fatores de Virulência/fisiologia , Animais , Movimento Celular/imunologia , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Quimiocina CCL5/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Vírus do Orf/imunologia , Vírus do Orf/fisiologia , Ligação Proteica , Dermatopatias Virais/patologia
13.
J Gen Virol ; 84(Pt 5): 1101-1109, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12692274

RESUMO

Orf virus (ORFV) belongs to the genus Parapoxvirus and induces cutaneous pustular lesions in sheep, goats and humans. ORFV is unusual in that it has the ability to reinfect its host and this suggests that the generation of immunological memory has been impaired, thus exposing the host to subsequent infection. The discovery that ORFV encodes an IL-10-like virokine raises the question of whether this factor adversely affects the cells that initiate the acquired immune response. We examined the effect of ORFV-IL-10 on immature murine bone marrow-derived dendritic cells (BMDC). Immature BMDC are activated on exposure to antigen and undergo maturation. This process is characterized by increased expression of CD80, CD86 and MHC class II and reduced antigen uptake. We found that the maturation of BMDC is impaired in cells treated with ORFV-IL-10 prior to antigen exposure and this was exemplified by the reduced expression of the cell-surface markers described above. We have also shown that the activation of a haemagglutinin peptide (HAT)-specific T cell hybridoma by dendritic cell-mediated presentation of HAT and heat-inactivated influenza virus AP8/34 was markedly reduced following exposure to ORFV-IL-10. Finally, we examined the effect of ORFV-IL-10 on Langerhans' cell (LC) migration using cultured murine skin explant tissue and showed that this virokine impaired the spontaneous migration of LC from the epidermis and induced changes in LC morphology. Our findings suggest that ORFV-IL-10 has the capacity to impair the initiation of an acquired immune response and hence inhibit the generation of immunological memory necessary for immunity on subsequent exposure.


Assuntos
Células Dendríticas/imunologia , Interleucina-10/fisiologia , Vírus do Orf/genética , Vírus do Orf/patogenicidade , Proteínas Virais/fisiologia , Animais , Apresentação de Antígeno/imunologia , Células da Medula Óssea/imunologia , Diferenciação Celular , Movimento Celular , Células Cultivadas , Técnicas de Cultura , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/fisiologia , Interleucina-10/genética , Interleucina-10/farmacologia , Células de Langerhans/imunologia , Camundongos , Pele/citologia , Proteínas Virais/genética , Proteínas Virais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA