Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 10(3): 975-87, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23331322

RESUMO

Macrophages represent an important therapeutic target, because their activity has been implicated in the progression of debilitating diseases such as cancer and atherosclerosis. In this work, we designed and characterized pH-responsive polymeric micelles that were mannosylated using "click" chemistry to achieve CD206 (mannose receptor)-targeted siRNA delivery. CD206 is primarily expressed on macrophages and dendritic cells and upregulated in tumor-associated macrophages, a potentially useful target for cancer therapy. The mannosylated nanoparticles improved the delivery of siRNA into primary macrophages by 4-fold relative to the delivery of a nontargeted version of the same carrier (p < 0.01). Further, treatment for 24 h with the mannose-targeted siRNA carriers achieved 87 ± 10% knockdown of a model gene in primary macrophages, a cell type that is typically difficult to transfect. Finally, these nanoparticles were also avidly recognized and internalized by human macrophages and facilitated the delivery of 13-fold more siRNA into these cells than into model breast cancer cell lines. We anticipate that these mannose receptor-targeted, endosomolytic siRNA delivery nanoparticles will become an enabling technology for targeting macrophage activity in various diseases, especially those in which CD206 is upregulated in macrophages present within the pathologic site. This work also establishes a generalizable platform that could be applied for "click" functionalization with other targeting ligands to direct siRNA delivery.


Assuntos
Micelas , Polímeros/administração & dosagem , Polímeros/química , Animais , Células Cultivadas , Química Click , Células Dendríticas/metabolismo , Citometria de Fluxo , Humanos , Lectinas Tipo C/genética , Macrófagos/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/genética , Microscopia Confocal , Nanopartículas/administração & dosagem , Nanopartículas/química , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/genética
2.
PLoS One ; 9(7): e101276, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25077607

RESUMO

In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid) (PLAGA) microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2) improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P) receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3) via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1) mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.


Assuntos
Regeneração Óssea , Géis , Lipídeos/administração & dosagem , Microesferas , Células-Tronco/citologia , Alicerces Teciduais , Anormalidades Múltiplas , Animais , Catarata/congênito , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Córnea/anormalidades , Feminino , Cloridrato de Fingolimode , Hipogonadismo , Deficiência Intelectual , Camundongos , Camundongos Endogâmicos C57BL , Microcefalia , Atrofia Óptica , Propilenoglicóis/farmacologia , Ratos , Ratos Sprague-Dawley , Esfingosina/análogos & derivados , Esfingosina/farmacologia
3.
Int J Nanomedicine ; 7: 799-813, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22359457

RESUMO

The assessment of macrophage response to nanoparticles is a central component in the evaluation of new nanoparticle designs for future in vivo application. This work investigates which feature, nanoparticle size or charge, is more predictive of non-specific uptake of nanoparticles by macrophages. This was investigated by synthesizing a library of polymer-coated iron oxide micelles, spanning a range of 30-100 nm in diameter and -23 mV to +9 mV, and measuring internalization into macrophages in vitro. Nanoparticle size and charge both contributed towards non-specific uptake, but within the ranges investigated, size appears to be a more dominant predictor of uptake. Based on these results, a protease-responsive nanoparticle was synthesized, displaying a matrix metalloproteinase-9 (MMP-9)-cleavable polymeric corona. These nanoparticles are able to respond to MMP-9 activity through the shedding of 10-20 nm of hydrodynamic diameter. This MMP-9-triggered decrease in nanoparticle size also led to up to a six-fold decrease in nanoparticle internalization by macrophages and is observable by T(2)-weighted magnetic resonance imaging. These findings guide the design of imaging or therapeutic nanoparticles for in vivo targeting of macrophage activity in pathologic states.


Assuntos
Macrófagos/metabolismo , Nanopartículas/química , Polietilenoglicóis/farmacocinética , Sulfetos/farmacocinética , Linhagem Celular Tumoral , Células Cultivadas , Compostos Férricos/química , Compostos Férricos/farmacocinética , Humanos , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/metabolismo , Micelas , Tamanho da Partícula , Polietilenoglicóis/química , Polissacarídeos/metabolismo , Sulfetos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA