Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Glycobiology ; 27(2): 188-198, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798070

RESUMO

Glycosyltransferases, usually residing within the intracellular secretory apparatus, also circulate in the blood. Many of these blood-borne glycosyltransferases are associated with pathological states, including malignancies and inflammatory conditions. Despite the potential for dynamic modifications of glycans on distal cell surfaces and in the extracellular milieu, the glycan-modifying activities present in systemic circulation have not been systematically examined. Here, we describe an evaluation of blood-borne sialyl-, galactosyl- and fucosyltransferase activities that act upon the four common terminal glycan precursor motifs, GlcNAc monomer, Gal(ß3)GlcNAc, Gal(ß4)GlcNAc and Gal(ß3)GalNAc, to produce more complex glycan structures. Data from radioisotope assays and detailed product analysis by sequential tandem mass spectrometry show that blood has the capacity to generate many of the well-recognized and important glycan motifs, including the Lewis, sialyl-Lewis, H- and Sialyl-T antigens. While many of these glycosyltransferases are freely circulating in the plasma, human and mouse platelets are important carriers for others, including ST3Gal-1 and ß4GalT. Platelets compartmentalize glycosyltransferases and release them upon activation. Human platelets are also carriers for large amounts of ST6Gal-1 and the α3-sialyl to Gal(ß4)GlcNAc sialyltransferases, both of which are conspicuously absent in mouse platelets. This study highlights the capability of circulatory glycosyltransferases, which are dynamically controlled by platelet activation, to remodel cell surface glycans and alter cell behavior.


Assuntos
Fucosiltransferases/sangue , Galactosiltransferases/sangue , Inflamação/sangue , Sialiltransferases/sangue , Animais , Plaquetas/enzimologia , Glicosilação , Glicosiltransferases , Humanos , Inflamação/enzimologia , Camundongos , Polissacarídeos/biossíntese , Polissacarídeos/química
2.
Elife ; 82019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31408003

RESUMO

The immune response relies on the integration of cell-intrinsic processes with cell-extrinsic cues. During infection, B cells vacate the marrow during emergency granulopoiesis but return upon restoration of homeostasis. Here we report a novel glycosylation-mediated crosstalk between marrow B cells and hematopoietic progenitors. Human B cells secrete active ST6GAL1 sialyltransferase that remodels progenitor cell surface glycans to suppress granulopoiesis. In mouse models, ST6GAL1 from B cells alters the sialylation profile of bone marrow populations, and mature IgD+ B cells were enriched in sialylated bone marrow niches. In clinical multiple myeloma, ST6GAL1 abundance in the multiple myeloma cells negatively correlated with neutrophil abundance. These observations highlight not only the ability of medullary B cells to influence blood cell production, but also the disruption to normal granulopoiesis by excessive ST6GAL1 in malignancy.


Assuntos
Linfócitos B/metabolismo , Comunicação Celular , Diferenciação Celular/efeitos dos fármacos , Granulócitos/efeitos dos fármacos , Granulócitos/fisiologia , Sialiltransferases/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Glicosilação , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA