Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 18(3): e1010024, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239675

RESUMO

Genetic mechanisms that repress transposable elements (TEs) in young animals decline during aging, as reflected by increased TE expression in aged animals. Does increased TE expression during aging lead to more genomic TE copies in older animals? To address this question, we quantified TE Landscapes (TLs) via whole genome sequencing of young and aged Drosophila strains of wild-type and mutant backgrounds. We quantified TLs in whole flies and dissected brains and validated the feasibility of our approach in detecting new TE insertions in aging Drosophila genomes when small RNA and RNA interference (RNAi) pathways are compromised. We also describe improved sequencing methods to quantify extra-chromosomal DNA circles (eccDNAs) in Drosophila as an additional source of TE copies that accumulate during aging. Lastly, to combat the natural progression of aging-associated TE expression, we show that knocking down PAF1, a conserved transcription elongation factor that antagonizes RNAi pathways, may bolster suppression of TEs during aging and extend lifespan. Our study suggests that in addition to a possible influence by different genetic backgrounds, small RNA and RNAi mechanisms may mitigate genomic TL expansion despite the increase in TE transcripts during aging.


Assuntos
Elementos de DNA Transponíveis , Drosophila , Envelhecimento/genética , Animais , Elementos de DNA Transponíveis/genética , Drosophila/genética , Genômica/métodos , RNA
2.
Genome Res ; 31(3): 512-528, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33419731

RESUMO

Although mosquitoes are major transmission vectors for pathogenic arboviruses, viral infection has little impact on mosquito health. This immunity is caused in part by mosquito RNA interference (RNAi) pathways that generate antiviral small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). RNAi also maintains genome integrity by potently repressing mosquito transposon activity in the germline and soma. However, viral and transposon small RNA regulatory pathways have not been systematically examined together in mosquitoes. Therefore, we developed an integrated mosquito small RNA genomics (MSRG) resource that analyzes the transposon and virus small RNA profiles in mosquito cell cultures and somatic and gonadal tissues across four medically important mosquito species. Our resource captures both somatic and gonadal small RNA expression profiles within mosquito cell cultures, and we report the evolutionary dynamics of a novel Mosquito-Conserved piRNA Cluster Locus (MCpiRCL) made up of satellite DNA repeats. In the larger culicine mosquito genomes we detected highly regular periodicity in piRNA biogenesis patterns coinciding with the expansion of Piwi pathway genes. Finally, our resource enables detection of cross talk between piRNA and siRNA populations in mosquito cells during a response to virus infection. The MSRG resource will aid efforts to dissect and combat the capacity of mosquitoes to tolerate and spread arboviruses.


Assuntos
Culicidae/genética , Culicidae/virologia , Elementos de DNA Transponíveis/genética , Genômica , RNA Interferente Pequeno/genética , Vírus , Animais
4.
Nucleic Acids Res ; 47(11): 5603-5616, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31216042

RESUMO

The nematode Caenorhabditis elegans contains several types of endogenous small interfering RNAs (endo-siRNAs) produced by RNA-dependent RNA polymerase (RdRP) complexes. Both 'silencing' siRNAs bound by Worm-specific Argonautes (WAGO) and 'activating' siRNAs bound by the CSR-1 Argonaute require the DRH-3 helicase, an RdRP component. Here, we show that, in the drh-3(ne4253) mutant deficient in RdRP-produced secondary endo-siRNAs, the silencing histone mark H3K9me3 is largely depleted, whereas in the csr-1 partially rescued null mutant strain (WM193), this mark is ectopically deposited on CSR-1 target genes. Moreover, we observe ectopic H3K9me3 at enhancer elements and an increased number of small RNAs that match enhancers in both drh-3 and csr-1 mutants. Finally, we detect accumulation of H3K27me3 at highly expressed genes in the drh-3(ne4253) mutant, which correlates with their reduced transcription. Our study shows that when abundant RdRP-produced siRNAs are depleted, there is ectopic elevation of noncoding RNAs linked to sites with increased silencing chromatin marks. Moreover, our results suggest that enhancer small RNAs may guide local H3K9 methylation.


Assuntos
Caenorhabditis elegans/genética , Cromatina/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Histonas/metabolismo , Metilação
5.
Environ Res ; 191: 110174, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919973

RESUMO

Although NO2, a major traffic related air pollutant, has been associated with onset of childhood asthma, young children may be more susceptible to traffic related air pollution exposure compared to other individuals. We linked data from National Longitudinal Survey of Children and Youths Cycle 1-5 (1994-2003) and the National Air Pollution Surveillance Program to determine the association between NO2 exposure and either early or late onset childhood asthma phenotypes. Children diagnosed with asthma from age 0-3 were defined as having early onset asthma. Children diagnosed with asthma from age 4-9 were defined as having late onset asthma. Mean NO2 exposure for each quartile was 6.31 ppb, 9.45 ppb, 11.83 ppb, and 17.9 ppb. Higher levels of NO2 exposure were more strongly associated with early childhood asthma (Quartile 3 OR: 2.11, 95% CI: 1.29, 3.44, Quartile 4 OR: 2.16, 95% CI: 1.27, 3.68) compared to the lowest level of NO2 exposure (Quartile 1). No such association was observed with risk of late childhood asthma onset. Asthma susceptibility to NO2 exposure may vary with the childhood developmental stage, and young children may be susceptible to NO2 exposure at levels well below national and international guidelines. Our study emphasizes the importance of considering the timing of childhood asthma onset in future studies and confirms the increased risk of early onset of childhood asthma associated even with relatively low NO2 exposure levels.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Adolescente , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Asma/induzido quimicamente , Asma/epidemiologia , Criança , Pré-Escolar , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Estudos Longitudinais , Dióxido de Nitrogênio/toxicidade
6.
RNA ; 23(4): 504-520, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28031481

RESUMO

Piwi proteins utilize small RNAs (piRNAs) to recognize target transcripts such as transposable elements (TE). However, extensive piRNA sequence diversity also suggests that Piwi/piRNA complexes interact with many transcripts beyond TEs. To determine Piwi target RNAs, we used ribonucleoprotein-immunoprecipitation (RIP) and cross-linking and immunoprecipitation (CLIP) to identify thousands of transcripts associated with the Piwi proteins XIWI and XILI (Piwi-protein-associated transcripts, PATs) from early stage oocytes of X. laevis and X. tropicalis Most PATs associate with both XIWI and XILI and include transcripts of developmentally important proteins in oogenesis and embryogenesis. Only a minor fraction of PATs in both frog species displayed near perfect matches to piRNAs. Since predicting imperfect pairing between all piRNAs and target RNAs remains intractable, we instead determined that PAT read counts correlate well with the lengths and expression levels of transcripts, features that have also been observed for oocyte mRNAs associated with Drosophila Piwi proteins. We used an in vitro assay with exogenous RNA to confirm that XIWI associates with RNAs in a length- and concentration-dependent manner. In this assay, noncoding transcripts with many perfectly matched antisense piRNAs were unstable, whereas coding transcripts with matching piRNAs were stable, consistent with emerging evidence that Piwi proteins both promote the turnover of TEs and other RNAs, and may also regulate mRNA localization and translation. Our study suggests that Piwi proteins play multiple roles in germ cells and establishes a tractable vertebrate system to study the role of Piwi proteins in transcript regulation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Oócitos/metabolismo , RNA Interferente Pequeno/genética , Transcriptoma , Proteínas de Xenopus/genética , Xenopus/genética , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Bioensaio , Elementos de DNA Transponíveis , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Oócitos/crescimento & desenvolvimento , Oogênese/genética , Filogenia , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Xenopus/classificação , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
7.
PLoS Genet ; 11(11): e1005652, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26588211

RESUMO

The Piwi pathway is deeply conserved amongst animals because one of its essential functions is to repress transposons. However, many Piwi-interacting RNAs (piRNAs) do not base-pair to transposons and remain mysterious in their targeting function. The sheer number of piRNA cluster (piC) loci in animal genomes and infrequent piRNA sequence conservation also present challenges in determining which piC loci are most important for development. To address this question, we determined the piRNA expression patterns of piC loci across a wide phylogenetic spectrum of animals, and reveal that most genic and intergenic piC loci evolve rapidly in their capacity to generate piRNAs, regardless of known transposon silencing function. Surprisingly, we also uncovered a distinct set of piC loci with piRNA expression conserved deeply in Eutherian mammals. We name these loci Eutherian-Conserved piRNA cluster (ECpiC) loci. Supporting the hypothesis that conservation of piRNA expression across ~100 million years of Eutherian evolution implies function, we determined that one ECpiC locus generates abundant piRNAs antisense to the STOX1 transcript, a gene clinically associated with preeclampsia. Furthermore, we confirmed reduced piRNAs in existing mouse mutations at ECpiC-Asb1 and -Cbl, which also display spermatogenic defects. The Asb1 mutant testes with strongly reduced Asb1 piRNAs also exhibit up-regulated gene expression profiles. These data indicate ECpiC loci may be specially adapted to support Eutherian reproduction.


Assuntos
Mamíferos/genética , Família Multigênica , RNA Interferente Pequeno/genética , Animais , Evolução Molecular , Mamíferos/classificação
8.
Genome Res ; 24(12): 1977-90, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267525

RESUMO

Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposable elements (TEs) from mobilizing in gonadal cells. To determine the spectrum of piRNA-regulated targets that may extend beyond TEs, we conducted a genome-wide survey for transcripts associated with PIWI and for transcripts affected by PIWI knockdown in Drosophila ovarian somatic sheet (OSS) cells, a follicle cell line expressing the Piwi pathway. Despite the immense sequence diversity among OSS cell piRNAs, our analysis indicates that TE transcripts are the major transcripts associated with and directly regulated by PIWI. However, several coding genes were indirectly regulated by PIWI via an adjacent de novo TE insertion that generated a nascent TE transcript. Interestingly, we noticed that PIWI-regulated genes in OSS cells greatly differed from genes affected in a related follicle cell culture, ovarian somatic cells (OSCs). Therefore, we characterized the distinct genomic TE insertions across four OSS and OSC lines and discovered dynamic TE landscapes in gonadal cultures that were defined by a subset of active TEs. Particular de novo TEs appeared to stimulate the expression of novel candidate long noncoding RNAs (lncRNAs) in a cell lineage-specific manner, and some of these TE-associated lncRNAs were associated with PIWI and overlapped PIWI-regulated genes. Our analyses of OSCs and OSS cells demonstrate that despite having a Piwi pathway to suppress endogenous mobile elements, gonadal cell TE landscapes can still dramatically change and create transcriptome diversity.


Assuntos
Elementos de DNA Transponíveis , Drosophila/genética , Regulação da Expressão Gênica , RNA Longo não Codificante , RNA Interferente Pequeno , Animais , Linhagem Celular , Análise por Conglomerados , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Transcrição Gênica , Transcriptoma
9.
Nucleic Acids Res ; 43(22): 10655-72, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26578579

RESUMO

To understand how transposon landscapes (TLs) vary across animal genomes, we describe a new method called the Transposon Insertion and Depletion AnaLyzer (TIDAL) and a database of >300 TLs in Drosophila melanogaster (TIDAL-Fly). Our analysis reveals pervasive TL diversity across cell lines and fly strains, even for identically named sub-strains from different laboratories such as the ISO1 strain used for the reference genome sequence. On average, >500 novel insertions exist in every lab strain, inbred strains of the Drosophila Genetic Reference Panel (DGRP), and fly isolates in the Drosophila Genome Nexus (DGN). A minority (<25%) of transposon families comprise the majority (>70%) of TL diversity across fly strains. A sharp contrast between insertion and depletion patterns indicates that many transposons are unique to the ISO1 reference genome sequence. Although TL diversity from fly strains reaches asymptotic limits with increasing sequencing depth, rampant TL diversity causes unsaturated detection of TLs in pools of flies. Finally, we show novel transposon insertions negatively correlate with Piwi-interacting RNA (piRNA) levels for most transposon families, except for the highly-abundant roo retrotransposon. Our study provides a useful resource for Drosophila geneticists to understand how transposons create extensive genomic diversity in fly cell lines and strains.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Genômica/métodos , Retroelementos , Animais , Linhagem Celular , Bases de Dados de Ácidos Nucleicos , Variação Genética , Genoma de Inseto , RNA Interferente Pequeno/metabolismo
10.
J Mol Evol ; 83(3-4): 126-136, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27743003

RESUMO

Most of the largest vertebrate genomes are found in salamanders, a clade of amphibians that includes 686 species. Salamander genomes range in size from 14 to 120 Gb, reflecting the accumulation of large numbers of transposable element (TE) sequences from all three TE classes. Although DNA loss rates are slow in salamanders relative to other vertebrates, high levels of TE insertion are also likely required to explain such high TE loads. Across the Tree of Life, novel TE insertions are suppressed by several pathways involving small RNA molecules. In most known animals, TE activity in the germline is primarily regulated by the Piwi-interacting RNA (piRNA) pathway. In this study, we test the hypothesis that salamanders' unusually high TE loads reflect the loss of the ancestral piRNA-mediated TE-silencing machinery. We characterized the small RNA pool in the female and male adult gonads, testing for the presence of small RNA molecules that bear the characteristics of TE-targeting piRNAs. We also analyzed the amino acid sequences of piRNA pathway proteins from salamanders and other vertebrates, testing whether the overall patterns of sequence divergence are consistent with conserved pathway function across the vertebrate clade. Our results do not support the hypothesis of piRNA pathway loss; instead, they suggest that the piRNA pathway is expressed in salamanders. Given these results, we propose hypotheses to explain how the extraordinary TE loads in salamander genomes could have accumulated, despite the expression of TE-silencing machinery.


Assuntos
RNA Interferente Pequeno/genética , Urodelos/genética , Animais , Elementos de DNA Transponíveis , Evolução Molecular , Perfilação da Expressão Gênica , RNA Interferente Pequeno/metabolismo , Seleção Genética , Transcriptoma
11.
RNA ; 20(12): 1977-86, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25336588

RESUMO

Although Piwi proteins and Piwi-interacting RNAs (piRNAs) genetically repress transposable elements (TEs), it is unclear how the highly diverse piRNA populations direct Piwi proteins to silence TE targets without silencing the entire transcriptome. To determine the capacity of piRNA-mediated silencing, we introduced reporter genes into Drosophila OSS cells, which express microRNAs (miRNAs) and piRNAs, and compared the Piwi pathway to the Argonaute pathway in gene regulation. Reporter constructs containing several target sites that were robustly silenced by miRNAs were not silenced to the same degrees by piRNAs. However, another set of reporters we designed to enable a large number of both TE-directed and genic piRNAs to bind were robustly silenced by the PIWI/piRNA complex in OSS cells. These reporters show that a bulk of piRNAs are required to pair to the reporter's transcripts and not the reporter's DNA sequence to engage PIWI-mediated silencing. Following our genome-wide study of PIWI-regulated targets in OSS cells, we assessed candidate gene elements with our reporter platform. These results suggest TE sequences are the most direct of PIWI regulatory targets while coding genes are less directly affected by PIWI targeting. Finally, our study suggests that the PIWI transcriptional silencing mechanism triggers robust chromatin changes on targets with sufficient piRNA binding, and preferentially regulates TE transcripts because protein-coding transcripts lack a threshold of targeting by piRNA populations. This reporter platform will facilitate future dissections of the PIWI-targeting mechanism.


Assuntos
Proteínas Argonautas/genética , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Inativação Gênica , RNA Interferente Pequeno/genética , Animais , Drosophila/genética , MicroRNAs/genética , Fases de Leitura Aberta/genética , RNA Antissenso
12.
J Neurosci ; 34(2): 392-407, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24403140

RESUMO

A key feature of the CNS is structural plasticity, the ability of neurons to alter their morphology and connectivity in response to sensory experience and other changes in the environment. How this structural plasticity is achieved at the molecular level is not well understood. We provide evidence that changes in sensory experience simultaneously trigger multiple signaling pathways that either promote or restrict growth of the dendritic arbor; structural plasticity is achieved through a balance of these opposing signals. Specifically, we have uncovered a novel, activity-dependent signaling pathway that restricts dendritic arborization. We demonstrate that the GTPase Rem2 is regulated at the transcriptional level by calcium influx through L-VGCCs and inhibits dendritic arborization in cultured rat cortical neurons and in the Xenopus laevis tadpole visual system. Thus, our results demonstrate that changes in neuronal activity initiate competing signaling pathways that positively and negatively regulate the growth of the dendritic arbor. It is the balance of these opposing signals that leads to proper dendritic morphology.


Assuntos
Dendritos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Plasticidade Neuronal/fisiologia , Transdução de Sinais/fisiologia , Animais , Canais de Cálcio Tipo L/metabolismo , Eletroporação , Feminino , Masculino , Camundongos , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma , Xenopus
13.
RNA ; 19(3): 306-19, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23329696

RESUMO

Early environmental experiences profoundly influence adult phenotypes through complex mechanisms that are poorly understood. We previously showed that adult Caenorhabditis elegans that transiently passed through the stress-induced dauer larval stage (post-dauer adults) exhibit significant changes in gene expression profiles, chromatin states, and life history traits when compared with adults that bypassed the dauer stage (control adults). These wild-type, isogenic animals of equivalent developmental stages exhibit different signatures of molecular marks that reflect their distinct developmental trajectories. To gain insight into the mechanisms that contribute to these developmental history-dependent phenotypes, we profiled small RNAs from post-dauer and control adults by deep sequencing. RNA interference (RNAi) pathways are known to regulate genome-wide gene expression both at the chromatin and post-transcriptional level. By quantifying changes in endogenous small interfering RNA (endo-siRNA) levels in post-dauer as compared with control animals, our analyses identified a subset of genes that are likely targets of developmental history-dependent reprogramming through a complex RNAi-mediated mechanism. Mutations in specific endo-siRNA pathways affect expected gene expression and chromatin state changes for a subset of genes in post-dauer animals, as well as disrupt their increased brood size phenotype. We also find that both chromatin state and endo-siRNA distribution in dauers are unique, and suggest that remodeling in dauers provides a template for the subsequent establishment of adult post-dauer profiles. Our results indicate a role for endo-siRNA pathways as a contributing mechanism to early experience-dependent phenotypic plasticity in adults, and describe how developmental history can program adult physiology and behavior via epigenetic mechanisms.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Fenótipo , Interferência de RNA , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma Helmíntico , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
14.
Methods ; 63(2): 101-9, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23707624

RESUMO

The RNA interference (RNAi) pathway in animal cells can be harnessed to silence gene expression with artificial small interfering RNAs (siRNAs) or transgenes that express small hairpin RNAs (shRNAs). The transgene-expressing shRNA approach has been adapted into large-scale resources for genome-wide loss-of-function screens, whereas focused studies on a narrow set of genes can be achieved by using individual shRNA constructs from these resources. Although current shRNA repositories generally work, they might fail in certain situations and therefore necessitate other alternatives. We detail here a new highly-accessible and rational design of custom shRNAs that utilizes a refined backbone configuration termed the 'organic' shRNA (OshR) platform. The OshR platform is 'organic' because it conforms more naturally to the endogenous vertebrate miRNAs by maintaining specific bulges and incorporating strategic mismatches to insure the desired guide strand is produced while reducing the accumulation of passenger strands that might contribute to off-target effects. We also demonstrate that the reliability of the OshR platform for gene silencing is increased when sequences target the 3' UnTranslated Region (3'UTR) of a gene. We further compare the OshR platform with the current and emerging shRNA designs, and propose that the OshR platform is a novel approach that can allow investigators to generate custom and effective shRNAs for individual gene functional studies.


Assuntos
Técnicas de Silenciamento de Genes/métodos , RNA Interferente Pequeno/genética , Transgenes , Regiões 3' não Traduzidas , Animais , Pareamento de Bases , Sequência de Bases , Clonagem Molecular , Células HEK293 , Humanos , Camundongos , MicroRNAs/genética , Dados de Sequência Molecular , Monofenol Mono-Oxigenase/biossíntese , Monofenol Mono-Oxigenase/genética , Quinases Relacionadas a NIMA , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , RNA Mensageiro/genética , Xenopus , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/genética
15.
Adv Exp Med Biol ; 825: 159-97, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25201106

RESUMO

Animal germ cells are totipotent because they maintain a highly unique and specialized epigenetic state for its genome. To accomplish this, germ cells express a rich repertoire of specialized RNA-binding protein complexes such as the Piwi proteins and Piwi-interacting RNAs (piRNAs): a germ-cell branch of the RNA interference (RNAi) phenomenon which includes microRNA and endogenous small interfering RNA pathways. Piwi proteins and piRNAs are deeply conserved in animal evolution and play essential roles in fertility and regeneration. Molecular mechanisms for how these ribonucleoproteins act upon the transcriptome and genome are only now coming to light with the application of systems-wide approaches in both invertebrates and vertebrates. Systems biology studies on invertebrates have revealed that transcriptional and heritable silencing is a main mechanism driven by Piwi proteins and piRNA complexes. In vertebrates, Piwi-targeting mechanisms and piRNA biogenesis have progressed, while the discovery that the nuclease activity of Piwi protein is essential for vertebrate germ cell development but not completely required in invertebrates highlights the many complexities of this pathway in different animals. This review recounts how recent systems-wide approaches have rapidly accelerated our appreciation for the broad reach of the Piwi pathway on germline genome regulation and what questions facing the field await to be unraveled.


Assuntos
Proteínas Argonautas , Células Germinativas/metabolismo , RNA Interferente Pequeno , Biologia de Sistemas , Células-Tronco Totipotentes/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Genoma Humano/fisiologia , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma/fisiologia
16.
bioRxiv ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38496444

RESUMO

A quarter of human population is infected with Mycobacterium tuberculosis, but less than 10% of those infected develop clinical, mostly pulmonary, TB. To dissect mechanisms of susceptibility in immunocompetent individuals, we developed a genetically defined sst1-susceptible mouse model that uniquely reproduces a defining feature of human TB: development of necrotic lung lesions after infection with virulent Mtb. In this study, we explored the connectivity of the sst1-regulated pathways during prolonged macrophage activation with TNF. We determined that the aberrant response of the sst1-susceptible macrophages to TNF was primarily driven by conflicting Myc and antioxidant response pathways that resulted in a coordinated failure to properly sequester intracellular iron and activate ferroptosis inhibitor enzymes. Consequently, iron-mediated lipid peroxidation fueled IFNß superinduction and sustained the Type I Interferon (IFN-I) pathway hyperactivity that locked the sst1-susceptible macrophages in a state of unresolving stress and compromised their resistance to Mtb. The accumulation of the aberrantly activated, stressed, macrophages within granuloma microenvironment led to the local failure of anti-tuberculosis immunity and tissue necrosis. Our findings suggest a novel link between metabolic dysregulation in macrophages and susceptibility to TB, offering insights into potential therapeutic targets aimed at modulating macrophage function and improving TB control.

17.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895463

RESUMO

The mosquito Aedes aegypti is a prominent vector for arboviruses, but the breadth of mosquito viruses that infects this specie is not fully understood. In the broadest global survey to date of over 200 Ae. aegypti small RNA samples, we detected viral small interfering RNAs (siRNAs) and Piwi interacting RNAs (piRNAs) arising from mosquito viruses. We confirmed that most academic laboratory colonies of Ae. aegypti lack persisting viruses, yet two commercial strains were infected by a novel tombus-like virus. Ae. aegypti from North to South American locations were also teeming with multiple insect viruses, with Anphevirus and a bunyavirus displaying geographical boundaries from the viral small RNA patterns. Asian Ae. aegypti small RNA patterns indicate infections by similar mosquito viruses from the Americas and reveal the first wild example of dengue virus infection generating viral small RNAs. African Ae. aegypti also contained various viral small RNAs including novel viruses only found in these African substrains. Intriguingly, viral long RNA patterns can differ from small RNA patterns, indicative of viral transcripts evading the mosquitoes' RNA interference (RNAi) machinery. To determine whether the viruses we discovered via small RNA sequencing were replicating and transmissible, we infected C6/36 and Aag2 cells with Ae. aegypti homogenates. Through blind passaging, we generated cell lines stably infected by these mosquito viruses which then generated abundant viral siRNAs and piRNAs that resemble the native mosquito viral small RNA patterns. This mosquito small RNA genomics approach augments surveillance approaches for emerging infectious diseases.

18.
EMBO J ; 28(19): 2945-58, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19713941

RESUMO

Piwi proteins and Piwi-interacting RNAs (piRNAs) are essential for germ cell development, but analysis of the molecular mechanisms of these ribonucleoproteins remains challenging in most animal germ cells. To address this challenge, we systematically characterized Xiwi, a Xenopus Piwi homologue, and piRNAs from Xenopus eggs and oocytes. We used the large size of Xenopus eggs to analyze small RNAs at the single cell level, and find abundant piRNAs and large piRNA clusters in the Xenopus tropicalis genome, some of which resemble the Drosophila piRNA-generating flamenco locus. Although most piRNA clusters are expressed simultaneously in an egg, individual frogs show distinct profiles of cluster expression. Xiwi is associated with microtubules and the meiotic spindle, and is localized to the germ plasm--a cytoplasmic determinant of germ cell formation. Xiwi associates with translational regulators in an RNA-dependent manner, but Xenopus tudor interacts with Xiwi independently of RNA. Our study adds insight to piRNA transcription regulation by showing that individual animals can have differential piRNA expression profiles. We suggest that in addition to regulating transposable elements, Xiwi may function in specifying RNA localization in vertebrate oocytes.


Assuntos
Óvulo/metabolismo , RNA Interferente Pequeno/genética , Xenopus/genética , Animais , Drosophila/genética , Meiose , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Oogênese , Biossíntese de Proteínas , RNA Interferente Pequeno/metabolismo , Xenopus/embriologia , Xenopus/metabolismo , Proteínas de Xenopus/análise , Proteínas de Xenopus/metabolismo
19.
Proc Natl Acad Sci U S A ; 107(4): 1606-11, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20080648

RESUMO

In response to infection, invertebrates process replicating viral RNA genomes into siRNAs of discrete sizes to guide virus clearance by RNA interference. Here, we show that viral siRNAs sequenced from fruit fly, mosquito, and nematode cells were all overlapping in sequence, suggesting a possibility of using siRNAs for viral genome assembly and virus discovery. To test this idea, we examined contigs assembled from published small RNA libraries and discovered five previously undescribed viruses from cultured Drosophila cells and adult mosquitoes, including three with a positive-strand RNA genome and two with a dsRNA genome. Notably, four of the identified viruses exhibited only low sequence similarities to known viruses, such that none could be assigned into an existing virus genus. We also report detection of virus-derived PIWI-interacting RNAs (piRNAs) in Drosophila melanogaster that have not been previously described in any other host species and demonstrate viral genome assembly from viral piRNAs in the absence of viral siRNAs. Thus, this study provides a powerful culture-independent approach for virus discovery in invertebrates by assembling viral genomes directly from host immune response products without prior virus enrichment or amplification. We propose that invertebrate viruses discovered by this approach may include previously undescribed human and vertebrate viral pathogens that are transmitted by arthropod vectors.


Assuntos
Vírus de RNA/genética , RNA Interferente Pequeno/genética , RNA Viral/genética , Montagem de Vírus , Animais , Sequência de Bases , Caenorhabditis elegans , Linhagem Celular , Culicidae , Drosophila melanogaster , Genoma Viral , Dados de Sequência Molecular , Vírus de RNA/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA