Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 116(5): 110878, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851465

RESUMO

Traumatic perioperative conditions may trigger early systemic responses, activate leukocytes and reprogram the immune system. We hypothesize that leukocyte activation may not revert to pre-surgical states, and that protracted activation may emerge with increased risks of comorbidities. We tested this concept by examining the transcriptomes of monocytes and T cells in a representative observational cohort of patients (n = 13) admitted for elective cardiac surgery. Transcriptomes in T cells and monocytes were compared from before surgery (t0), and monocytes were analyzed longitudinally after acute (t24hr), and convalescent (t3m) time points. Monocytes and T cells expressed distinct transcriptomes, reflected by statistically significant differential expression of 558 T cell related genes. Monocytes expressed genes related to protein degradation and presented atypical activation of surface markers and cytoplasmic functions over time. Additionally, monocytes exhibited limited transcriptomic heterogeneity prior to surgery, and long-term patterns of gene expression associated with atherosclerosis showed three temporally distinct signatures. These data establish that post-cardiac surgery transcriptomes of monocytes differ even at three months compared to baselines, which may reflect latent ('smoldering') inflammation and persistent progression of tissue degenerative processes that should inform clinical care.

2.
BMC Med ; 22(1): 80, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378568

RESUMO

BACKGROUND: Dysbiosis of the gut microbiome is frequent in the intensive care unit (ICU), potentially leading to a heightened risk of nosocomial infections. Enhancing the gut microbiome has been proposed as a strategic approach to mitigate potential adverse outcomes. While prior research on select probiotic supplements has not successfully shown to improve gut microbial diversity, fermented foods offer a promising alternative. In this open-label phase I safety and feasibility study, we examined the safety and feasibility of kefir as an initial step towards utilizing fermented foods to mitigate gut dysbiosis in critically ill patients. METHODS: We administered kefir in escalating doses (60 mL, followed by 120 mL after 12 h, then 240 mL daily) to 54 critically ill patients with an intact gastrointestinal tract. To evaluate kefir's safety, we monitored for gastrointestinal symptoms. Feasibility was determined by whether patients received a minimum of 75% of their assigned kefir doses. To assess changes in the gut microbiome composition following kefir administration, we collected two stool samples from 13 patients: one within 72 h of admission to the ICU and another at least 72 h after the first stool sample. RESULTS: After administering kefir, none of the 54 critically ill patients exhibited signs of kefir-related bacteremia. No side effects like bloating, vomiting, or aspiration were noted, except for diarrhea in two patients concurrently on laxatives. Out of the 393 kefir doses prescribed for all participants, 359 (91%) were successfully administered. We were able to collect an initial stool sample from 29 (54%) patients and a follow-up sample from 13 (24%) patients. Analysis of the 26 paired samples revealed no increase in gut microbial α-diversity between the two timepoints. However, there was a significant improvement in the Gut Microbiome Wellness Index (GMWI) by the second timepoint (P = 0.034, one-sided Wilcoxon signed-rank test); this finding supports our hypothesis that kefir administration can improve gut health in critically ill patients. Additionally, the known microbial species in kefir were found to exhibit varying levels of engraftment in patients' guts. CONCLUSIONS: Providing kefir to critically ill individuals is safe and feasible. Our findings warrant a larger evaluation of kefir's safety, tolerability, and impact on gut microbiome dysbiosis in patients admitted to the ICU. TRIAL REGISTRATION: NCT05416814; trial registered on June 13, 2022.


Assuntos
Microbioma Gastrointestinal , Kefir , Adulto , Humanos , Estado Terminal/terapia , Disbiose , Estudos de Viabilidade , Kefir/análise
3.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612525

RESUMO

This research analyzes immunological response patterns to SARS-CoV-2 infection in blood and urine in individuals with serum cotinine-confirmed exposure to nicotine. Samples of blood and urine were obtained from a total of 80 patients admitted to hospital within 24 h of admission (tadm), 48 h later (t48h), and 7 days later (t7d) if patients remained hospitalized or at discharge. Serum cotinine above 3.75 ng/mL was deemed as biologically significant exposure to nicotine. Viral load was measured with serum SARS-CoV-2 S-spike protein. Titer of IgG, IgA, and IgM against S- and N-protein assessed specific antiviral responses. Cellular destruction was measured by high mobility group box protein-1 (HMGB-1) serum levels and heat shock protein 60 (Hsp-60). Serum interleukin 6 (IL-6), and ferritin gauged non-specific inflammation. The immunological profile was assessed with O-link. Serum titers of IgA were lower at tadm in smokers vs. nonsmokers (p = 0.0397). IgM at t48h was lower in cotinine-positive individuals (p = 0.0188). IgG did not differ between cotinine-positive and negative individuals. HMGB-1 at admission was elevated in cotinine positive individuals. Patients with positive cotinine did not exhibit increased markers of non-specific inflammation and tissue destruction. The blood immunological profile had distinctive differences at admission (MIC A/B↓), 48 h (CCL19↓, MCP-3↓, CD28↑, CD8↓, IFNγ↓, IL-12↓, GZNB↓, MIC A/B↓) or 7 days (CD28↓) in the cotinine-positive group. The urine immunological profile showed a profile with minimal overlap with blood as the following markers being affected at tadm (CCL20↑, CXCL5↑, CD8↑, IL-12↑, MIC A/B↑, GZNH↑, TNFRS14↑), t48h (CCL20↓, TRAIL↓) and t7d (EGF↑, ADA↑) in patients with a cotinine-positive test. Here, we showed a distinctive immunological profile in hospitalized COVID-19 patients with confirmed exposure to nicotine.


Assuntos
COVID-19 , Proteína HMGB1 , Humanos , Nicotina , Cotinina , Pandemias , SARS-CoV-2 , Inflamação , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M
4.
Healthcare (Basel) ; 12(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667620

RESUMO

Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant demyelinating neuropathy characterized by an increased susceptibility to peripheral nerve injury from trauma, compression, or shear forces. Patients with this condition are unique, necessitating distinct considerations for anesthesia and surgical teams. This review describes the etiology, prevalence, clinical presentation, and management of HNPP and presents contemporary evidence and recommendations for optimal care for HNPP patients in the perioperative period. While the incidence of HNPP is reported at 7-16:100,000, this figure may be an underestimation due to underdiagnosis, further complicating medicolegal issues. With the subtle nature of symptoms associated with HNPP, patients with this condition may remain unrecognized during the perioperative period, posing significant risks. Several aspects of caring for this population, including anesthetic choices, intraoperative positioning, and monitoring strategy, may deviate from standard practices. As such, a tailored approach to caring for this unique population, coupled with meticulous preoperative planning, is crucial and requires a multidisciplinary approach.

5.
J Crit Care ; 79: 154436, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37769422

RESUMO

With approximately 39 trillion cells and over 20 million genes, the human gut microbiome plays an integral role in both health and disease. Modern living has brought a widespread use of processed food and beverages, antimicrobial and immunomodulatory drugs, and invasive procedures, all of which profoundly disrupt the delicate homeostasis between the host and its microbiome. Of particular interest is the human gut microbiome, which is progressively being recognized as an important contributing factor in many aspects of critical illness, from predisposition to recovery. Herein, we describe the current understanding of the adverse impacts of standard intensive care interventions on the human gut microbiome and delve into how these microbial alterations can influence patient outcomes. Additionally, we explore the potential association between the gut microbiome and post-intensive care syndrome, shedding light on a previously underappreciated avenue that may enhance patient recuperation following critical illness. There is an impending need for future epidemiological studies to encompass detailed phenotypic analyses of gut microbiome perturbations. Interventions aimed at restoring the gut microbiome represent a promising therapeutic frontier in the quest to prevent and treat critical illnesses.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Estado Terminal , Cuidados Críticos , Disbiose
6.
Biomedicines ; 12(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275389

RESUMO

The release of danger signals from tissues in response to trauma during cardiac surgery creates conditions to reprogram the immune system to subsequent challenges posed by pathogens in the postoperative period. To demonstrate this, we tested immunoreactivity before surgery as the baseline (tbaseline), followed by subsequent challenges during the acute phase (t24h), convalescence (t7d), and long-term recovery (t3m). For 108 patients undergoing elective heart surgery, whole blood was stimulated with lipopolysaccharide (LPS), Influenza A virus subtype N2 (H3N2), or the Flublok™ vaccine to represent common pathogenic challenges. Leukocytosis, platelet count, and serum C-reactive protein (CRP) were used to measure non-specific inflammation. Cytokines were measured after 18 h of stimulation to reflect activation of the various cell types (activated neutrophils-IL-8; activated T cells-IL-2, IFNγ, activated monocyte (MO)-TNFα, IL-6, and deactivated or atypically activated MO and/or T cells-M-CSF, IL-10). IL-2 and IL-10 were increased at t7d, while TNFα was suppressed at t24h when LPS was utilized. Interestingly, M-CSF and IL-6 production was elevated at seven days in response to all stimuli compared to baseline. While some non-specific markers of inflammation (white cell count, IL-6, and IL-8) returned to presurgical levels at t3m, CRP and platelet counts remained elevated. We showed that surgical stimulus reprograms leukocyte response to LPS with only partial restoration of non-specific markers of inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA