RESUMO
Data are presented demonstrating that absorbance detection can be used during high-speed sedimentation velocity analytical ultracentrifugation (hs-SV-AUC) experiments to characterize the size distribution of adeno-associated virus (AAV) drug products accurately. Advantages and limitations of being able to use this detector in this specific type of SV-AUC experiment are discussed.
Assuntos
Dependovirus , Ultracentrifugação , Dependovirus/genética , Dependovirus/isolamento & purificação , Ultracentrifugação/métodos , HumanosRESUMO
Simulated SV-AUC data for an adeno-associated virus (AAV) sample consisting of four components having closely spaced sedimentation coefficients were used to develop a high-speed protocol that optimized the size distribution analysis resolution. The resulting high speed (45K rpm) SV-AUC (hs-SV-AUC) protocol poses several experimental challenges: 1) the need for rapid data acquisition, 2) increased potential for optical artifacts from steep and fast moving boundaries and 3) the increased potential for convection. To overcome these challenges the protocol uses interference detection at low temperatures and data that are confined to a limited radial-time window. In addition to providing higher resolution AAV SV-AUC data and very short run times (<20 min after temperature equilibration), the need to match the sample and reference solvent composition and meniscus positions is relaxed making interference detection as simple to employ as absorbance detection. Finally, experimental data comparing hs-SV-AUC (at 45K rpm) with standard low-speed (15K rpm) SV-AUC on the same AAV sample demonstrate the size distribution resolution improvement. These experiments also validate the use of a radial-time window and show how quickly data can be acquired using the hs-SV-AUC protocol.
Assuntos
Temperatura Baixa , Dependovirus , Dependovirus/genética , Área Sob a Curva , Ultracentrifugação/métodos , TemperaturaRESUMO
Prions, misfolded proteins that aggregate, cause an array of progressively deteriorating conditions to which, currently, there are no effective treatments. The presently accepted model indicates that the soluble non-prion forms of prion-forming proteins, such as the well-studied SUP35, do not exist in large aggregated molecular complexes. Here, we show using analytical ultracentrifugation with fluorescent detection that the non-prion form of SUP35 exists in a range of discretely sized soluble complexes (19S, 28S, 39S, 57S, and 70S-200S). Similar to the [PSI+] aggregated complexes, each of these [psi-] complexes associates at stoichiometric levels with a large variety of molecular chaperones: HSP70 proteins comprise the major component. Another yeast prion-forming protein, RNQ1 (known to promote the production of the prion SUP35 state), is also present in SUP35 complexes. These results establish that the non-prion SUP35, like its prion form, is predisposed to form large molecular complexes containing chaperones and other prion-forming proteins. These results agree with our previous studies on the huntingtin protein. That the normal forms for aggregation-prone proteins may preexist in large molecular complexes has important ramifications for the progression of diseases involving protein aggregation.
Assuntos
Chaperonas Moleculares/química , Príons/química , Proteínas de Choque Térmico HSP70 , Fatores de Terminação de Peptídeos , Agregados Proteicos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiaeRESUMO
Analytical ultracentrifugation (AUC) provides the most widely applicable, precise, and accurate means for characterizing solution hydrodynamic and thermodynamic properties. While generally useful, boundary sedimentation velocity AUC (SV-AUC) analysis has become particularly important in assessing protein aggregation, fragmentation and conformational variants in the same solvents used during drug development and production. In early 2017 the only manufacturer of the analytical ultracentrifuge released its newest analytical ultracentrifuge, the Optima, to replace the aging second-generation XLA/I series ultracentrifuges. However, SV-AUC data from four Optima units used in the characterization of adeno-associated virus (AAV) have shown evidence of sample convection. Further investigation reveals this problem arises from the design of the temperature control system, which makes it prone to producing destabilizing temperature-induced density gradients that can lead to density inversions. The problem is intermittent and variable in severity within a given Optima unit and between Optima units. This convection appears to be associated mainly with low rotor speeds and dilute concentration of solvent components, i.e., AAV analysis conditions. Data features diagnostic for this problem and strategies for its elimination or minimization are provided.
Assuntos
Ultracentrifugação/instrumentação , Artefatos , Soluções Tampão , Convecção , Dependovirus , Desenho de Equipamento , Solventes , TemperaturaRESUMO
ß-Lactoglobulin is the most abundant protein in the whey fraction of ruminant milks, yet is absent in human milk. It has been studied intensively due to its impact on the processing and allergenic properties of ruminant milk products. However, the physiological function of ß-lactoglobulin remains unclear. Using the fluorescence-detection system within the analytical ultracentrifuge, we observed an interaction involving fluorescently labelled ß-lactoglobulin in its native environment, i.e. cow and goat milk, for the first time. Co-elution experiments support that these ß-lactoglobulin interactions occur naturally in milk and provide evidence that the interacting partners are immunoglobulins, while further sedimentation velocity experiments confirm that an interaction occurs between these molecules. The identification of these interactions, made possible through the use of fluorescence-detected analytical ultracentrifugation, provides possible clues to the long debated physiological function of this abundant milk protein.
Assuntos
Leite/metabolismo , Espectrometria de Fluorescência , Ultracentrifugação , Animais , Bovinos , Lactoglobulinas/metabolismo , Ligação Proteica , SoluçõesRESUMO
The eukaryotic eRF1 translation termination factor plays an important role in recognizing stop codons and initiating the end to translation. However, which exact complexes contain eRF1 and at what abundance is not clear. We have used analytical ultracentrifugation with fluorescent detection system to identify the protein complexome of eRF1 in the yeast Saccharomyces cerevisiae. In addition to eRF1 presence in translating polysomes, we found that eRF1 associated with five other macromolecular complexes: 77S, 57S, 39S, 28S, and 20S in size. Generally equal abundances of each of these complexes were found. The 77S complex primarily contained the free 80S ribosome consistent with in vitro studies and did not appear to contain significant levels of the monosomal translating complex that co-migrates with the free 80S ribosome. The 57S and 39S complexes represented, respectively, free 60S and 40S ribosomal subunits bound to eRF1, associations not previously reported. The novel 28S and 20S complexes (containing minimal masses of 830 KDa and 500 KDa, respectively) lacked significant RNA components and appeared to be oligomeric, as eRF1 has a mass of 49 KDa. The majority of polysomal complexes containing eRF1 were both substantially deadenylated and lacking in closed-loop factors eIF4E and eIF4G. The thirteen percent of such translating polysomes that contained poly(A) tails had equivalent levels of eIF4E and eIF4G, suggesting these complexes were in a closed-loop structure. The identification of eRF1 in these unique and previously unrecognized complexes suggests a variety of new roles for eRF1 in the regulation of cellular processes.
Assuntos
Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator de Iniciação 4E em Eucariotos/análise , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/análise , Fator de Iniciação Eucariótico 4G/metabolismo , Peso Molecular , Fatores de Terminação de Peptídeos/análise , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Subunidades Ribossômicas/química , Subunidades Ribossômicas/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/análise , Ultracentrifugação/métodosRESUMO
At least nine neurodegenerative diseases that are caused by the aggregation induced by long tracts of glutamine sequences have been identified. One such polyglutamine-containing protein is huntingtin, which is the primary factor responsible for Huntington's disease. Sedimentation velocity with fluorescence detection is applied to perform a comparative study of the aggregation of the huntingtin exon 1 protein fragment upon transgenic expression in Drosophila melanogaster and Caenorhabditis elegans. This approach allows the detection of aggregation in complex mixtures under physiologically relevant conditions. Complementary methods used to support this biophysical approach included fluorescence microscopy and semidenaturing detergent agarose gel electrophoresis, as a point of comparison with earlier studies. New analysis tools developed for the analytical ultracentrifuge have made it possible to readily identify a wide range of aggregating species, including the monomer, a set of intermediate aggregates, and insoluble inclusion bodies. Differences in aggregation in the two animal model systems are noted, possibly because of differences in levels of expression of glutamine-rich sequences. An increased level of aggregation is shown to correlate with increased toxicity for both animal models. Co-expression of the human Hsp70 in D. melanogaster showed some mitigation of aggregation and toxicity, correlating best with inclusion body formation. The comparative study emphasizes the value of the analytical ultracentrifuge equipped with fluorescence detection as a useful and rigorous tool for in situ aggregation analysis to assess commonalities in aggregation across animal model systems.
Assuntos
Caenorhabditis elegans/metabolismo , Drosophila melanogaster/metabolismo , Proteína Huntingtina/química , Animais , Western Blotting , Proteínas de Drosophila , Eletroforese em Gel Bidimensional/métodos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Larva/fisiologia , Mutação , Conformação Proteica , UltracentrifugaçãoRESUMO
Phospholipids (PLs) are a major, diverse constituent of cell membranes. PL diversity arises from the nature of the fatty acid chains, as well as the headgroup structure. The headgroup charge is thought to contribute to both the strength and specificity of protein-membrane interactions. Because it has been difficult to measure membrane charge, ascertaining the role charge plays in these interactions has been challenging. Presented here are charge measurements on lipid Nanodiscs at 20°C in 100 mM NaCl, 50 mM Tris, at pH 7.4. Values are also reported for measurements made in the presence of Ca(2+) and Mg(2+) as a function of NaCl concentration, pH, and temperature, and in solvents containing other types of cations and anions. Measurements were made for neutral (phosphatidylcholine and phosphatidylethanolamine) and anionic (phosphatidylserine, phosphatidic acid, cardiolipin, and phosphatidylinositol 4,5-bisphosphate (PIP2)) PLs containing palmitoyl-oleoyl and dimyristoyl fatty acid chains. In addition, charge measurements were made on Nanodiscs containing an Escherichia coli lipid extract. The data collected reveal that 1) POPE is anionic and not neutral at pH 7.4; 2) high-anionic-content Nanodiscs exhibit polyelectrolyte behavior; 3) 3 mM Ca(2+) neutralizes a constant fraction of the charge, but not a constant amount of charge, for POPS and POPC Nanodiscs; 4) in contrast to some previous work, POPC only interacts weakly with Ca(2+); 5) divalent cations interact with lipids in a lipid- and ion-specific manner for POPA and PIP2 lipids; and 6) the monovalent anion type has little influence on the lipid charge. These results should help eliminate inconsistencies among data obtained using different techniques, membrane systems, and experimental conditions, and they provide foundational data for developing an accurate view of membranes and membrane-protein interactions.
Assuntos
Bicamadas Lipídicas/química , Nanoestruturas/química , Fosfolipídeos/química , Cálcio/química , Eletroforese , Escherichia coli , Concentração de Íons de Hidrogênio , Íons/química , Magnésio/química , Transição de Fase , TemperaturaRESUMO
Recently [Neubrand, M. W., et al. (2015) Biochemistry 54, 1542-1557], we determined a concentration-dependent monomer-dimer-tetramer equilibrium in aqueous bilirubin ditaurate (BDT) solutions and explored the nature of high-affinity binding of BDT monomers with monomers and micelles of the common taurine-conjugated bile salts (BS). We now investigate, employing complementary physicochemical methods, including fluorescence emission spectrophotometry and quasi-elastic light scattering spectroscopy, the influence of phosphatidylcholine (PC), the predominant phospholipid of bile and calcium, the major divalent biliary cation, on these self-interactions and heterointeractions. We have used short-chain, lyso and long-chain PC species as models and contrasted our results with those of parallel studies employing unconjugated bilirubin (UCB) as the fully charged dianion. Both bile pigments interacted with the zwitterionic headgroup of short-chain lecithins, forming water-soluble (BDT) and insoluble ion-pair complexes (UCB), respectively. Upon micelle formation, BDT monomers apparently remained at the headgroup mantle of short-chain PCs, but the ion pairs with UCB became internalized within the micelle's hydrophobic core. BDT interacted with the headgroups of unilamellar egg yolk (EY) PC vesicles; however, with the simultaneous addition of CaCl2, a reversible aggregation took place, but not vesicle fusion. With mixed EYPC/BS micelles, BDT became bound to the hydrophilic surface (as with simple BS micelles), and in turn, both BDT and BS bound calcium, but not other divalent cations. The calcium complexation of BDT and BS was enhanced strongly with increases in micellar EYPC, suggesting calcium-mediated cross-bridging of hydrophilic headgroups at the micelle's surface. Therefore, the physicochemical binding of BDT to BS in an artificial bile medium is influenced not only by BS species and concentration but also by long-chain PCs and calcium ions that exert a specific rather than a counterion effect. This work should serve as a physicochemical template for studies with other conjugated bilirubins, including bilirubin diglucuronoside (BDG), the principal bilirubin conjugate (cBR) in human bile.
Assuntos
Ácidos e Sais Biliares/química , Bilirrubina/análogos & derivados , Cloreto de Cálcio/química , Micelas , Fosfatidilcolinas/química , Taurina/análogos & derivados , Anisotropia , Bilirrubina/química , Bilirrubina/metabolismo , Biopolímeros , Dimerização , Modelos Moleculares , Espalhamento de Radiação , Soluções , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade , Taurina/química , Taurina/metabolismo , Lipossomas UnilamelaresRESUMO
The solution behavior of bilirubin ditaurate (BDT), the first naturally occurring conjugated bile pigment to be physically and chemically characterized, was assessed in aqueous solution and in monomeric and micellar solutions of common taurine-conjugated bile salts (BS). Analytical ultracentrifugation revealed that BDT self-associates in monomer-dimer equilibria between 1 and 500 µM, forming limiting tetramers at low millimolar concentrations. Self-association was enthalpically driven with ΔG values of ≈5 kcal/mol, suggesting strong hydrophobic interactions. Added NaCl and decreases in temperature shifted the oligomerization to lower BDT concentrations. On the basis of circular dichroism spectra and the limiting size of the self-aggregates, we infer that the tetramers are composed of 2P(+) and 2M(-) enantiomeric BDT pairs in "ridge-tile" conformations interacting in a "double-bookend" structure. With added monomeric BS, blue shifts in the UV-vis spectra and tight isosbestic points revealed that BDT/BS heterodimers form, followed by BDT "decorating" BS micelles mostly via hydrophilic interactions. Conformational enantiomerism, fluorescence intensities, and anisotropy, as well as resistance of the hybrid particles to disaggregation in 6 M urea, suggested that two or three hydrogen-bonding sites bound BDT monomers to the hydroxyl groups of BS, possibly via pyrrole-π-orbital-OH interactions. BDT stabilized these interactions by enveloping the BS in its "ridge-tile" pincers with variable strain that maximized van der Waals interactions. Possibly because the BDT molecule becomes highly strained with BS subtending a 7ß-hydroxyl group, BDT became totally resistant to oxidation in air. This work predicts that, because of BS dissolution of the BDT self-aggregates, BS/bilirubin hybrid particles, which are stabilized hydrophilically, are likely to be the dominant mode of transport for all conjugated bilirubins in bile.
Assuntos
Ácidos e Sais Biliares/química , Bilirrubina/análogos & derivados , Micelas , Taurina/análogos & derivados , Bilirrubina/química , Dimerização , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estereoisomerismo , Taurina/química , Água/químicaRESUMO
We demonstrate the use of dip-pen nanolithography (DPN) to crystallize proteins on surface-localized functionalized lipid layer arrays. DOPC lipid layers, containing small amounts of biotin-DOPE lipid molecules, were printed on glass substrates and evaluated in vapor diffusion and batch crystallization screening setups, where streptavidin was used as a model protein for crystallization. Independently of the crystallization system used and the geometry of the lipid layers, nucleation of streptavidin crystals occurred specifically on the DPN-printed biotinylated structures. Protein crystallization on lipid array patches is also demonstrated in a microfluidic chip, which opens the way toward high-throughput screening to find suitable nucleation and crystal growth conditions. The results demonstrate the use of DPN in directing and inducing protein crystallization on specific surface locations.
Assuntos
Cristalização/métodos , Nanotecnologia , Estreptavidina/química , 1,2-Dipalmitoilfosfatidilcolina/química , Técnicas Analíticas Microfluídicas/instrumentação , Nanotecnologia/instrumentação , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
AML1/ETO results from the t(8;21) associated with 12%-15% of acute myeloid leukemia. The AML1/ETO MYND domain mediates interactions with the corepressors SMRT and N-CoR and contributes to AML1/ETO's ability to repress proliferation and differentiation of primary bone marrow cells as well as to enhance their self renewal in vitro. We solved the solution structure of the MYND domain and show it to be structurally homologous to the PHD and RING finger families of proteins. We also determined the solution structure of an MYND-SMRT peptide complex. We demonstrated that a single amino acid substitution that disrupts the interaction between the MYND domain and the SMRT peptide attenuated AML1/ETO's effects on proliferation, differentiation, and gene expression.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Repressoras/metabolismo , Animais , Células da Medula Óssea , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Expressão Gênica , Humanos , Camundongos , Modelos Moleculares , Mutação , Proteínas Nucleares/genética , Correpressor 1 de Receptor Nuclear , Ligação Proteica , Estrutura Terciária de Proteína , Proteína 1 Parceira de Translocação de RUNX1 , Proteínas Repressoras/genéticaRESUMO
As the central effector of visual transduction, the regulation of photoreceptor phosphodiesterase (PDE6) is controlled by both allosteric mechanisms and extrinsic binding partners. However, the conformational changes and interactions of PDE6 with known interacting proteins are poorly understood. Using a fluorescence detection system for the analytical ultracentrifuge, we examined allosteric changes in PDE6 structure and protein-protein interactions with its inhibitory γ-subunit, the prenyl-binding protein (PrBP/δ), and activated transducin. In solution, the PDE6 catalytic dimer (Pαß) exhibits a more asymmetric shape (axial ratio of 6.6) than reported previously. The inhibitory Pγ subunit behaves as an intrinsically disordered protein in solution but binds with high affinity to the catalytic dimer to reconstitute the holoenzyme without a detectable change in shape. Whereas the closely related PDE5 homodimer undergoes a significant change in its sedimentation properties upon cGMP binding to its regulatory cGMP binding site, no such change was detected upon ligand binding to the PDE6 catalytic dimer. However, when Pαß was reconstituted with Pγ truncation mutants lacking the C-terminal inhibitory region, cGMP-dependent allosteric changes were observed. PrBP/δ bound to the PDE6 holoenzyme with high affinity (K(D) = 6.2 nm) and induced elongation of the protein complex. Binding of activated transducin to PDE6 holoenzyme resulted in a concentration-dependent increase in the sedimentation coefficient, reflecting a dynamic equilibrium between transducin and PDE6. We conclude that allosteric regulation of PDE6 is more complex than for PDE5 and is dependent on interactions of regions of Pγ with the catalytic dimer.
Assuntos
GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Proteínas do Olho/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/enzimologia , Transducina/metabolismo , Regulação Alostérica/fisiologia , Animais , Bovinos , GMP Cíclico/química , GMP Cíclico/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Proteínas do Olho/química , Proteínas do Olho/genética , Humanos , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Células Fotorreceptoras Retinianas Bastonetes/citologia , Transducina/química , Transducina/genéticaRESUMO
The poly(A)-binding protein PAB1 from the yeast Saccharomyces cerevisiae plays an important role in controlling mRNA deadenylation rates. Deletion of either its RRM1 or proline-rich domain (P domain) severely restricts deadenylation and slows mRNA degradation. Because these large deletions could be having unknown effects on the structure of PAB1, different strategies were used to determine the importance of the RRM1 and P domains to deadenylation. Since the P domain is quite variable in size and sequence among eukaryotes, P domains from two human PABPCs and from Xenopus were substituted for that of PAB1. The resultant PAB1 hybrid proteins, however, displayed limited or no difference in mRNA deadenylation as compared with PAB1. In contrast to the P domain, the RRM1 domain is highly conserved across species, and a systematic mutagenesis of the RRM1 domain was undertaken to identify its functional regions. Several mutations along the RNA-binding surface of RRM1 inhibited deadenylation, whereas one set of mutations on its exterior non-RNA binding surface shifted deadenylation from a slow distributive process to a rapid processive deadenylation. These results suggest that the RRM1 domain is the more critical region of PAB1 for controlling deadenylation and consists of at least two distinguishable functional regions.
Assuntos
Proteínas de Ligação a Poli(A)/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Sítios de Ligação , Humanos , Proteínas de Ligação a Poli(A)/genética , Estrutura Terciária de Proteína , RNA Fúngico/genética , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevisRESUMO
Differentiation of binding accurate DNA replication polymerases over error prone DNA lesion bypass polymerases is essential for the proper maintenance of the genome. The hyperthermophilic archaeal organism Sulfolobus solfataricus (Sso) contains both a B-family replication (Dpo1) and a Y-family repair (Dpo4) polymerase and serves as a model system for understanding molecular mechanisms and assemblies for DNA replication and repair protein complexes. Protein cross-linking, isothermal titration calorimetry, and analytical ultracentrifugation have confirmed a previously unrecognized dimeric Dpo4 complex bound to DNA. Binding discrimination between these polymerases on model DNA templates is complicated by the fact that multiple oligomeric species are influenced by concentration and temperature. Temperature-dependent fluorescence anisotropy equilibrium binding experiments were used to separate discrete binding events for the formation of trimeric Dpo1 and dimeric Dpo4 complexes on DNA. The associated equilibria are found to be temperature-dependent, generally leading to improved binding at higher temperatures for both polymerases. At high temperatures, DNA binding of Dpo1 monomer is favored over binding of Dpo4 monomer, but binding of Dpo1 trimer is even more strongly favored over binding of Dpo4 dimer, thus providing thermodynamic selection. Greater processivities of nucleotide incorporation for trimeric Dpo1 and dimeric Dpo4 are also observed at higher temperatures, providing biochemical validation for the influence of tightly bound oligomeric polymerases. These results separate, quantify, and confirm individual and sequential processes leading to the formation of oligomeric Dpo1 and Dpo4 assemblies on DNA and provide for a concentration- and temperature-dependent discrimination of binding undamaged DNA templates at physiological temperatures.
Assuntos
DNA Polimerase beta/metabolismo , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , DNA Arqueal/biossíntese , Complexos Multienzimáticos/metabolismo , Sulfolobus solfataricus/metabolismo , DNA Polimerase beta/genética , DNA Arqueal/genética , Temperatura Alta , Complexos Multienzimáticos/genética , Sulfolobus solfataricus/genéticaRESUMO
Hepatitis A virus (HAV) infections result in different courses of the disease, varying between normal, prolonged and relapsing. However, the reason for these heterogeneous clinical appearances is not understood. As HAV-anti-HAV IgA immunocomplexes (HAV-IgA) infect hepatocytes, IgA was postulated as a carrier supporting hepatotropic transport of HAV, and it was speculated that this carrier mechanism contributes to the various clinical outcomes. In this study, the IgA-carrier mechanism was investigated in a mouse model. We show that HAV-IgA immunocomplexes efficiently reached the liver not only in HAV-seronegative mice, but also, and this is in contrast to free-HAV particles, in immunized HAV-seropositive animals. This IgA-mediated transport of HAV to the liver in the presence of immunity depended on the stage of development of the immune response. We conclude that over a period of several weeks after infection, anti-HAV IgA is able to promote an enterohepatic cycling of HAV, resulting in continuous endogenous reinfections of the liver. Our experiments indicate that highly avid IgG antibodies, which are present at later times of the infection, can terminate the reinfections. However, the endogenous reinfections in the presence of a developing neutralizing immunity might contribute to prolonged as well as to relapsing courses of HAV infections. Furthermore, the results show that serum IgA may act as an infection protracting factor.
Assuntos
Vírus da Hepatite A/imunologia , Hepatite A/imunologia , Imunoglobulina A/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Hepatite A/virologia , Vacinas contra Hepatite A/imunologia , Vírus da Hepatite A/fisiologia , Humanos , Imunidade Humoral/imunologia , Fígado/virologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , RecidivaRESUMO
The systemic amyloidoses are a rare but deadly class of protein folding disorders with significant unmet diagnostic and therapeutic needs. The current model for symptomatic amyloid progression includes a causative role for soluble toxic aggregates as well as for the fibrillar tissue deposits. Although much research is focused on elucidating the potential mechanism of aggregate toxicity, evidence to support their existence in vivo has been limited. We report the use of a technique we have termed biological on-line tracer sedimentation (BOLTS) to detect abnormal high-molecular-weight complexes (HMWCs) in serum samples from individuals with systemic amyloidosis due to aggregation and deposition of wild-type transthyretin (senile systemic amyloidosis, SSA) or monoclonal immunoglobulin light chain (AL amyloidosis). In this proof-of-concept study, HMWCs were observed in 31 of 77 amyloid samples (40.3%). HMWCs were not detected in any of the 17 nonamyloid control samples subjected to BOLTS analyses. These findings support the existence of potentially toxic amyloid aggregates and suggest that BOLTS may be a useful analytic and diagnostic platform in the study of the amyloidoses or other diseases where abnormal molecular complexes are formed in serum.
Assuntos
Amiloide/metabolismo , Proteínas Sanguíneas/metabolismo , Ultracentrifugação , Amiloide/análise , Amiloidose/metabolismo , Amiloidose/patologia , Proteínas Sanguíneas/análise , Fluoresceína/química , Fluoresceína/metabolismo , Humanos , Cadeias Leves de Imunoglobulina/metabolismo , Pré-Albumina/metabolismoRESUMO
We studied the effect of PEGylation on protein hydrodynamic behavior using hen egg-white lysozyme (HEWL) as a model protein. HEWL was PEGylated with a linear, 20 kDa PEG using reductive amination to produce PEG1-, PEG2-, and PEG3-HEWL. Near- and far-UV-CD spectroscopy revealed no significant effect of PEGylation on HEWL higher order structure. SDS-PAGE, mass spectrometry, online static light scattering (SLS) and sedimentation velocity analytical ultracentrifugation (SV-AUC) were employed to characterize the heterogeneity and molecular weights of the purified PEG-HEWL molecules, the results of which underscored the importance of using first-principle based methods for such analyses along with the underlying complexities of characterizing PEG-protein conjugates. Hydrodynamic characterization of various linear and branched PEGs (5-40 kDa) and PEG-HEWL molecules was performed using dynamic light scattering (DLS) and SV-AUC. The PEG polymer exhibited a random-coil conformation in solution with the M(w) â R(h)(n) scaling relationship yielding a scaling exponent (n) = 2.07. Singly branched PEGs were also observed to exhibit random-coil behavior with Stokes radii identical to those of their linear counterparts. SV-AUC studies of PEG-HEWL showed PEG has a "parachute" like effect on HEWL, and dramatically increases the frictional drag; PEG-HEWL also exhibited random-coil-like characteristics in solution (n = 1.8). The sedimentation coefficient (s) of PEG-HEWL remained invariant with increasing degree of PEGylation, indicating that the increase in molecular mass from PEG was compensated by an almost equivalent increase in frictional drag. Our studies draw caution to using SV-AUC for the characterization of size heterogeneity of PEG-protein mixtures.
Assuntos
Polietilenoglicóis/química , Proteínas/química , HidrodinâmicaRESUMO
The present work investigates the influence of electrostatic surface potential distribution of monoclonal antibodies (MAbs) on intermolecular interactions and viscosity. Electrostatic models suggest MAb-1 has a less uniform surface charge distribution than MAb-2. The patches of positive and negative potential on MAb-1 are predicted to favor intermolecular attraction, even in the presence of a small net positive charge. Consistent with this expectation, MAb-1 exhibits a negative second virial coefficient (B22), an increase in static structure factor, S((qâ0)), and a decrease in hydrodynamic interaction parameter, H((qâ0)), with increase in MAb-1 concentration. Conversely, MAb-2 did not show such heterogeneous charge distribution as MAb-1 and hence favors intermolecular repulsion (positive B22), lower static structure factor, S((qâ0)), and repulsion induced increase in momentum transfer, H((qâ0)), to result in lower viscosity of MAb-2. Charge swap mutants of MAb-1, M-5 and M-7, showed a decrease in charge asymmetry and concomitantly a loss in self-associating behavior and lower viscosity than MAb-1. However, replacement of charge residues in the sequence of MAb-2, M-10, did not invoke charge distribution to the same extent as MAb-1 and hence exhibited a similar viscosity and self-association profile as MAb-2.
Assuntos
Anticorpos Monoclonais/química , Soluções/química , Eletricidade Estática , ViscosidadeRESUMO
The diffusion interaction parameter (kD ) has been demonstrated to be a high-throughput technique for characterizing interactions between proteins in solution. kD reflects both attractive and repulsive interactions, including long-ranged electrostatic repulsions. Here, we plot the mutual diffusion coefficient (Dm ) as a function of the experimentally determined Debye-Hückel-Henry surface charge (ZDHH ) for seven human monoclonal antibodies (mAbs) in 15 mM histidine at pH 6. We find that graphs of Dm versus ZDHH intersect at ZDHH, ~ 2.6, independent of protein concentration. The same data plotted as kD versus ZDHH show a transition from net attractive to net repulsive interactions in the same region of the ZDHH intersection point. These data suggest that there is a minimum surface charge necessary on these mAbs needed to overcome attractive interactions.