Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Traffic ; 19(8): 605-623, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29696751

RESUMO

Plasmodium falciparum, which causes malaria, extensively remodels its human host cells, particularly erythrocytes. Remodelling is essential for parasite survival by helping to avoid host immunity and assisting in the uptake of plasma nutrients to fuel rapid growth. Host cell renovation is carried out by hundreds of parasite effector proteins that are exported into the erythrocyte across an enveloping parasitophorous vacuole membrane (PVM). The Plasmodium translocon for exported (PTEX) proteins is thought to span the PVM and provide a channel that unfolds and extrudes proteins across the PVM into the erythrocyte. We show that exported reporter proteins containing mouse dihydrofolate reductase domains that inducibly resist unfolding become trapped at the parasite surface partly colocalizing with PTEX. When cargo is trapped, loop-like extensions appear at the PVM containing both trapped cargo and PTEX protein EXP2, but not additional components HSP101 and PTEX150. Following removal of the block-inducing compound, export of reporter proteins only partly recovers possibly because much of the trapped cargo is spatially segregated in the loop regions away from PTEX. This suggests that parasites have the means to isolate unfoldable cargo proteins from PTEX-containing export zones to avert disruption of protein export that would reduce parasite growth.


Assuntos
Malária Falciparum/parasitologia , Parasitos/metabolismo , Plasmodium falciparum/metabolismo , Transporte Proteico/fisiologia , Proteínas de Protozoários/metabolismo , Animais , Eritrócitos/parasitologia , Humanos , Malária Falciparum/sangue , Camundongos , Vacúolos/parasitologia
2.
J Biol Chem ; 293(16): 6099-6120, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29496992

RESUMO

HIV-1 is spread by cell-free virions and by cell-cell viral transfer. We asked whether the structure and function of a broad neutralizing antibody (bNAb) epitope, the membrane-proximal ectodomain region (MPER) of the viral gp41 transmembrane glycoprotein, differ in cell-free and cell-cell-transmitted viruses and whether this difference could be related to Ab neutralization sensitivity. Whereas cell-free viruses bearing W666A and I675A substitutions in the MPER lacked infectivity, cell-associated mutant viruses were able to initiate robust spreading infection. Infectivity was restored to cell-free viruses by additional substitutions in the cytoplasmic tail (CT) of gp41 known to disrupt interactions with the viral matrix protein. We observed contrasting effects on cell-free virus infectivity when W666A was introduced to two transmitted/founder isolates, but both mutants could still mediate cell-cell spread. Domain swapping indicated that the disparate W666A phenotypes of the cell-free transmitted/founder viruses are controlled by sequences in variable regions 1, 2, and 4 of gp120. The sequential passaging of an MPER mutant (W672A) in peripheral blood mononuclear cells enabled selection of viral revertants with loss-of-glycan suppressor mutations in variable region 1, suggesting a functional interaction between variable region 1 and the MPER. An MPER-directed bNAb neutralized cell-free virus but not cell-cell viral spread. Our results suggest that the MPER of cell-cell-transmitted virions has a malleable structure that tolerates mutagenic disruption but is not accessible to bNAbs. In cell-free virions, interactions mediated by the CT impose an alternative MPER structure that is less tolerant of mutagenic alteration and is efficiently targeted by bNAbs.


Assuntos
Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Fusão de Membrana , Internalização do Vírus , Linhagem Celular , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Infecções por HIV/transmissão , Infecções por HIV/virologia , HIV-1/genética , Humanos , Modelos Moleculares , Mutação Puntual , Domínios Proteicos , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA