Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(33): 23067-23074, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39134028

RESUMO

A new class of Ru-sulfonamidate precatalysts for sp3 C-H hydroxylation is described along with a versatile process for assembling unique heteroleptic Ru(II) complexes. The latter has enabled structure-performance studies to identify an optimal precatalyst, 2h, bearing one 4,4'-di-tert-butylbipyridine (dtbpy) and one pyridylsulfonamidate ligand. Single-crystal X-ray analysis confirmed the structure and stereochemistry of this adduct. Catalytic hydroxylation reactions are conveniently performed in an aqueous, biphasic solvent mixture with 1 mol % 2h and ceric ammonium nitrate as the terminal oxidant and deliver oxidized products in yields ranging from 37 to 90%. A comparative mechanistic investigation of 2h against a related homoleptic precatalyst, [Ru(dtbpy)2(MeCN)2](OTf)2, convincingly establishes that the former generates one or more surprisingly long-lived active species under the reaction conditions, thus accounting for the high turnover numbers. Structure-performance, kinetics, mass spectrometric, and electrochemical analyses reveal that ligand oxidation is a prerequisite for catalyst activation. Our findings sharply contrast a large body of prior art showing that ligand oxidation is detrimental to catalyst function. We expect these results to stimulate future innovations in C-H oxidation research.

2.
Polyhedron ; 1822020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32410767

RESUMO

We report iridium catalysts IrCl(η5-Cp*)(κ2-(2-pyridyl)CH2NSO2C6H4X) (1-Me, X = CH3 and 1-F, X = F) for transfer hydrogenation of ketones with 2-propanol that operate by a previously unseen metal-ligand cooperative mechanism. Under the reaction conditions, complexes 1 (1-Me and 1-F) derivatize to a series of catalytic intermediates: Ir(η5-Cp*)(κ2-(C5H4N)CHNSO2Ar) (2), IrH(η5Cp*)(κ2-(2-pyridyl)CH2NSO2Ar) (3), and Ir(η5-Cp*)(κ3-(2-pyridyl)CH2NSO2Ar) (4). The structures of 1-Me and 4-Me were established by single-crystal X-ray diffraction. A rate-determining, concerted hydrogen transfer step (2 + R2CHOH ⇄ 3 + R2CO) is suggested by kinetic isotope effects, Eyring parameters (ΔH ≠ = 29.1(8) kcal mol-1 and ΔS ≠ = -17(19) eu), proton-hydride fidelity, and DFT calculations. According to DFT, a nine-membered cyclic transition state is stabilized by an alcohol molecule that serves as a proton shuttle.

3.
Chem Commun (Camb) ; 54(56): 7711-7724, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29888372

RESUMO

Selective hydrogen transfer remains a central research focus in catalysis: hydrogenation and dehydrogenation have central roles, both historical and contemporary, in all aspects of fuel, agricultural, pharmaceutical, and fine chemical synthesis. Our lab has been involved in this area by designing homogeneous catalysts for dehydrogenation and hydrogen transfer that fill needs ranging from on-demand hydrogen storage to fine chemical synthesis. A keen eye toward mechanism has enabled us to develop systems with excellent selectivity and longevity and demonstrate these in a diversity of high-value applications. Here we describe recent work from our lab in these areas that are linked by a central mechanistic trichotomy of catalyst initiation pathways that lead highly analogous precursors to a diversity of useful applications.

4.
Dalton Trans ; 47(38): 13559-13564, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30206593

RESUMO

We previously reported that iridium complex 1a enables the first homogeneous catalytic dehydrogenation of neat formic acid and enjoys unusual stability through millions of turnovers. Binuclear iridium hydride species 5a, which features a provocative C2-symmetric geometry, was isolated from the reaction as a catalyst resting state. By synthesizing and carefully examining the catalytic initiation of a series of analogues to 1a, we establish here a strong correlation between the formation of C2-twisted iridium dimers analogous to 5a and the reactivity of formic acid dehydrogenation: an efficient C2 twist appears unique to 1a and essential to catalytic reactivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA