RESUMO
There is strong interest in the production of bispecific monoclonal antibodies that can simultaneously bind two distinct targets or epitopes to achieve novel mechanisms of action and efficacy. Regeneron's bispecific technology, based upon a standard IgG, consists of a heterodimer of two different heavy chains, and a common light chain. Coexpression of two heavy chains leads to the formation of two parental IgG impurities, the removal of which is facilitated by a dipeptide substitution in the Fc portion of one of the heavy chains that ablates Fc Protein A binding. Therefore, the affinity capture (Protein A) step of the purification process must perform both bulk capture and high resolution of these mAb impurities, a task current commercially available resins are not designed for. Resolution can be further impaired by the ability of Protein A to bind some antibodies in the variable region of the heavy chain (VH ). This article details development of a novel Protein A resin. This resin combines an alkali stable ligand with a base matrix exhibiting excellent mass transfer properties to allow high capacity single step capture and resolution of bispecific antibodies (bsAbs) with high yields. The developed resin, named MabSelect SuRe™ pcc, is implemented in GMP production processes for several bsAbs. © 2018 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:650-658, 2018.
Assuntos
Anticorpos Biespecíficos/isolamento & purificação , Cromatografia de Afinidade , Resinas Sintéticas/química , Proteína Estafilocócica A/química , Anticorpos Biespecíficos/química , Sítios de Ligação , HumanosRESUMO
Antigen-binding fragments (Fabs) are novel formats in the growing pipeline of biotherapeutics. Sharing similar features to monoclonal antibodies (mAbs) with regard to expression, Fabs are considered as unchallenging for upstream development. Yet for downstream processing, the mature mAb downstream purification platform is not directly applicable. New approaches need to be found to achieve a lean purification process that maintains quality, productivity, and timelines while being generically applicable independent of the expression system. In a successful collaboration, BAC BV, GE Healthcare, and Novartis Pharma AG have developed a new affinity chromatography medium (resin) suitable to support cGMP manufacturing of lambda Fabs. We show that using this novel chromatography medium for the capture step, a purification platform for lambda Fabs can be established.