Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Epilepsia ; 59(3): 724-735, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29360159

RESUMO

OBJECTIVE: We previously demonstrated that positive allosteric modulators (PAMs) of metabotropic glutamate subtype 2 (mGlu2 ) receptors have potential synergistic interactions with the antiseizure drug levetiracetam (LEV). The present study utilizes isobolographic analysis to evaluate the combined administration of JNJ-46356479, a selective and potent mGlu2 PAM, with LEV as well as sodium valproate (VPA) and lamotrigine (LTG). METHODS: The anticonvulsant efficacy of JNJ-46356479 was evaluated in the 6-Hz model of psychomotor seizures in mice. JNJ-46356479 was administered in combination with LEV using 3 fixed dose-ratio treatment groups in the mouse 6-Hz (44-mA) seizure test. The combination of JNJ-46356479 with LEV was also evaluated in the mouse corneal kindling model. The potential interactions of JNJ-46356479 with the antiseizure drugs VPA and LTG were also evaluated using fixed dose-ratio combinations. Plasma levels were obtained for analysis of potential pharmacokinetic interactions for each combination studied in the mouse 6-Hz model. RESULTS: JNJ-46356479 was active in the 6-Hz model at both 32-mA and 44-mA stimulus intensities (median effective dose = 2.8 and 10.2 mg/kg, respectively). Using 1:1, 1:3, and 3:1 fixed dose-ratio combinations (LEV:JNJ-46356479), coadministration was significantly more potent than predicted for additive effects, and plasma levels suggest this synergism was not due to pharmacokinetic interactions. Studies in kindled mice further demonstrate the positive pharmacodynamic interaction of LEV with JNJ-46356479. Using 1:1 dose-ratio combinations of JNJ-46356479 with either VPA or LTG, there were no significant differences observed for coadministration. SIGNIFICANCE: These studies demonstrate a synergistic interaction of JNJ-46356479 with LEV, whereas no such effect occurred for JNJ-46356479 with either VPA or LTG. The synergy seems therefore to be specific to LEV, and the combination LEV/mGlu2 PAM has the potential to result in a rational polypharmacy approach to treat patients with refractory epilepsy, once it has been confirmed in clinical studies.


Assuntos
Anticonvulsivantes/administração & dosagem , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Piracetam/análogos & derivados , Receptores de Glutamato Metabotrópico/agonistas , Convulsões/tratamento farmacológico , Regulação Alostérica , Animais , Anticonvulsivantes/sangue , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Agonistas de Aminoácidos Excitatórios/sangue , Levetiracetam , Masculino , Camundongos , Piracetam/administração & dosagem , Piracetam/sangue , Receptores de Glutamato Metabotrópico/fisiologia , Convulsões/sangue
2.
Epilepsia ; 58(3): 484-493, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28166368

RESUMO

OBJECTIVE: The metabotropic glutamate receptor subtype 2 (mGlu2 ) possesses both orthosteric and allosteric modulatory sites, are expressed in the frontal cortex and limbic structures, and can affect excitatory synaptic transmission. Therefore, mGlu2 is a potential therapeutic target in the treatment of epilepsy. The present study seeks to evaluate the anticonvulsant potential of mGlu2 -acting compounds. METHODS: The anticonvulsant efficacy of two selective mGlu2 -positive allosteric modulators (PAMs) (JNJ-42153605 and JNJ-40411813/ADX71149) and one mGlu2/3 receptor agonist (LY404039) were evaluated alone and in combination with the antiseizure drug levetiracetam (LEV) in the mouse 6 Hz model. RESULTS: In the 6 Hz (32 mA stimulus intensity) model, median effective dose (ED50 ) values were determined for JNJ-42153605 (3.8 mg/kg), JNJ-40411813 (12.2 mg/kg), and LY404039 (10.9 mg/kg). At the 44 mA stimulus intensity, ED50 values were determined for JNJ-42153605 (5.9 mg/kg), JNJ-40411813 (21.0 mg/kg), LY404039 (14.1 mg/kg), and LEV (345 mg/kg). In addition, subprotective doses of each mGlu2 -acting compound, administered in combination with various doses of LEV, were able to shift the 6 Hz 44 mA ED50 for LEV by >25-fold. When JNJ-42153605 was administered at varying doses in combination with a single dose of LEV (10 mg/kg), the potency of JNJ-42153605 was increased 3.7-fold. Similarly, when a moderately effective dose of LEV (350 mg/kg) was administered in combination with varying doses of JNJ-40411813, the potency of JNJ-40411813 was increased approximately 14-fold. Plasma levels of JNJ-40411813 and LEV were not different when administered alone or in combination, suggesting that increases in potency are not due to pharmacokinetic effects. SIGNIFICANCE: These studies suggest a potential positive pharmacodynamic effect of mGlu2 -acting compounds in combination with LEV. If this effect is translated in a clinical setting, it can support a rational polypharmacy concept in treatment of epilepsy patients.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia Parcial Complexa/tratamento farmacológico , Fármacos Atuantes sobre Aminoácidos Excitatórios/uso terapêutico , Piracetam/análogos & derivados , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Biofísica , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Óxidos S-Cíclicos/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Epilepsia Parcial Complexa/etiologia , Levetiracetam , Masculino , Camundongos , Piracetam/uso terapêutico , Piridinas/uso terapêutico , Teste de Desempenho do Rota-Rod , Comportamento Estereotipado/fisiologia , Triazinas/uso terapêutico
3.
Bioorg Med Chem Lett ; 26(2): 429-434, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26684851

RESUMO

As part of our efforts to identify a suitable back-up compound to our recently disclosed mGlu5 positive allosteric modulator (PAM) clinical candidate VU0490551/JNJ-46778212, this letter details the investigation and challenges of a novel series of 6,7-dihydropyrazolo[1,5-a]pyrazin-4-one derivatives. From these efforts, compound 4k emerged as a potent and selective mGlu5 PAM displaying overall attractive in vitro (pharmacological and ADMET) and PK profiles combined with in vivo efficacy in preclinical models of schizophrenia. However, further advancement of the compound was precluded due to severely limiting CNS-related side-effects confirming the previously reported association between excessive mGlu5 activation and target-related toxicities.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Antipsicóticos/uso terapêutico , Pirazinas/uso terapêutico , Pirazóis/uso terapêutico , Receptor de Glutamato Metabotrópico 5/metabolismo , Esquizofrenia/tratamento farmacológico , Animais , Antipsicóticos/química , Antipsicóticos/farmacocinética , Células HEK293 , Humanos , Masculino , Pirazinas/química , Pirazinas/farmacocinética , Pirazóis/química , Pirazóis/farmacocinética , Ratos Sprague-Dawley , Esquizofrenia/metabolismo
4.
Bioorg Med Chem Lett ; 25(17): 3515-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26183084

RESUMO

This Letter describes the progress and challenges in the continued optimization of the mGlu5 positive allosteric modulator (PAM) clinical candidate VU0490551/JNJ-46778212. While many analogs addressed key areas for improvement, no one compound possessed the amalgamation of improvements needed within the (2(phenoxymethyl)-6,7-dihydrooxazolo[5,4-c]pyridine-5(4H)-yl(aryl)methanone scaffold to advance as a back-up clinical candidate. However, many analogs displayed excellent solubility and physiochemical properties, and were active in the amphetamine-induced hyperlocomotion (AHL) model. Moreover, the SAR was robust for this series of PAMs, and both polar and hydrogen-bond donors were found to be tolerated, leading to analogs with overall attractive profiles and good ligand efficiencies.


Assuntos
Receptor de Glutamato Metabotrópico 5/uso terapêutico , Esquizofrenia/genética , Regulação Alostérica , Descoberta de Drogas , Humanos , Estrutura Molecular , Receptor de Glutamato Metabotrópico 5/química , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 25(22): 5115-20, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26475522

RESUMO

We report the optimization of a series of metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs) from an acyl dihydropyrazolo[1,5-a]pyrimidinone class. Investigation of exocyclic amide transpositions with this unique 5,6-bicyclic core were conducted in attempt to modulate physicochemical properties and identify a suitable backup candidate with a reduced half-life. A potent and selective PAM, 1-(2-(phenoxymethyl)-6,7-dihydropyrazolo[1,5-a]pyrimidin-4(5H)-yl)ethanone (9a, VU0462807), was identified with superior solubility and efficacy in the acute amphetamine-induced hyperlocomotion (AHL) rat model with a minimum effective dose of 3mg/kg. Attempts to mitigate oxidative metabolism of the western phenoxy of 9a through extensive modification and profiling are described.


Assuntos
Encéfalo/metabolismo , Pirazóis/farmacocinética , Pirimidinas/farmacocinética , Pirimidinonas/farmacocinética , Receptor de Glutamato Metabotrópico 5/agonistas , Regulação Alostérica , Animais , Cães , Humanos , Ligantes , Masculino , Atividade Motora/efeitos dos fármacos , Pirazóis/sangue , Pirazóis/síntese química , Pirazóis/isolamento & purificação , Pirazóis/farmacologia , Pirimidinas/sangue , Pirimidinas/síntese química , Pirimidinas/farmacologia , Pirimidinonas/sangue , Pirimidinonas/síntese química , Pirimidinonas/isolamento & purificação , Pirimidinonas/farmacologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 25(6): 1310-7, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25683622

RESUMO

We report the discovery and SAR of two novel series of imidazopyrimidinones and dihydroimidazopyrimidinones as metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs). Exploration of several structural features in the western and eastern part of the imidazopyrimidinone core and combinations thereof, revealed compound 4a as a mGlu5 PAM with good in vitro potency and efficacy, acceptable drug metabolism and pharmacokinetic (DMPK) properties and in vivo efficacy in an amphetamine-based model of psychosis. However, the presence of CNS-mediated adverse effects in preclinical species precluded any further in vivo evaluation.


Assuntos
Antipsicóticos/química , Compostos Heterocíclicos com 2 Anéis/química , Imidazóis/química , Pirimidinonas/química , Receptor de Glutamato Metabotrópico 5/química , Regulação Alostérica , Animais , Antipsicóticos/síntese química , Antipsicóticos/farmacocinética , Encéfalo/metabolismo , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Compostos Heterocíclicos com 2 Anéis/síntese química , Compostos Heterocíclicos com 2 Anéis/farmacocinética , Humanos , Imidazóis/síntese química , Imidazóis/farmacocinética , Locomoção/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ligação Proteica , Pirimidinonas/síntese química , Pirimidinonas/farmacocinética , Ratos , Receptor de Glutamato Metabotrópico 5/metabolismo , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 24(15): 3641-6, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24961642

RESUMO

We report the optimization of a series of novel metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs) from a 5,6-bicyclic class of dihydropyrazolo[1,5-a]pyridin-4(5H)-ones containing a phenoxymethyl linker. Studies focused on a survey of non-amide containing hydrogen bond accepting (HBA) pharmacophore replacements. A highly potent and selective PAM, 2-(phenoxymethyl)-6,7-dihydropyrazolo[1,5-a]pyridin-4(5H)-one (11, VU0462054), bearing a simple ketone moiety, was identified (LE=0.52, LELP=3.2). In addition, hydroxyl, difluoro, ether, and amino variations were examined. Despite promising lead properties and exploration of alternative core heterocycles, linkers, and ketone replacements, oxidative metabolism and in vivo clearance remained problematic for the series.


Assuntos
Descoberta de Drogas , Piperidonas/farmacologia , Pirazóis/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Piperidonas/síntese química , Piperidonas/química , Pirazóis/síntese química , Pirazóis/química , Ratos , Relação Estrutura-Atividade
8.
J Pharmacol Exp Ther ; 347(3): 681-96, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24071734

RESUMO

Twenty-two neuroleptic drugs were studied for interaction with the behavior induced by intravenous injection of apomorphine in rats. All compounds dose-dependently shortened the duration of the apomorphine-induced agitation and-with the exception of clozapine-shortened the onset of the de-arousal grooming that typically occurs immediately after the agitation phase has been terminated. Progressively higher doses were required to antagonize higher levels of apomorphine at earlier time intervals after the intravenous injection. The compounds also decreased palpebral opening, and most of them suppressed grooming behavior at higher doses. Compounds differed considerably in dose increments required for: 1) suppression of grooming, from 0.33 for clozapine to >600 for remoxipride, raclopride, and droperidol; 2) blockade of agitation at 5 minutes after apomorphine, from 2.6 for pimozide to 165 for chlorprothixene and 254 for remoxipride; 3) mild decrease of palpebral opening, from 0.21 for sertindole to 191 for remoxipride; and 4) pronounced decrease of palpebral opening, from 10 for melperone to >820 for raclopride. Only four compounds were able to advance grooming to 15 minutes postapomorphine, but again dose increments varied considerably: droperidol (3.4), pimozide (9.1), raclopride (42), and remoxipride (383). Based on these results obtained in a single animal model, compounds were differentiated in terms of behavioral specificity, incisiveness (the power to counteract the effects of progressively higher apomorphine concentrations), and sedative side-effect liability. Possible explanations for the observed differences and clinical relevance are discussed.


Assuntos
Antipsicóticos/farmacologia , Apomorfina/farmacologia , Comportamento Animal/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Receptores Dopaminérgicos/efeitos dos fármacos , Agonistas alfa-Adrenérgicos/toxicidade , Animais , Apomorfina/antagonistas & inibidores , Nível de Alerta/efeitos dos fármacos , Túnica Conjuntiva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Asseio Animal/efeitos dos fármacos , Hipnóticos e Sedativos , Modelos Lineares , Masculino , Norepinefrina/toxicidade , Agitação Psicomotora/tratamento farmacológico , Ratos , Ratos Wistar , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D2/agonistas , Estimulação Química
9.
J Pharmacol Exp Ther ; 346(3): 514-27, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23766542

RESUMO

Modulation of the metabotropic glutamate type 2 (mGlu2) receptor is considered a promising target for the treatment of central nervous system diseases such as schizophrenia. Here, we describe the pharmacological properties of the novel mGlu2 receptor positive allosteric modulator (PAM) 3-cyano-1-cyclopropylmethyl-4-(4-phenyl-piperidin-1-yl)-pyridine-2(1H)-one (JNJ-40068782) and its radioligand [(3)H]JNJ-40068782. In guanosine 5'-O-(3-[(35)S]thio)triphosphate binding, JNJ-40068782 produced a leftward and upward shift in the glutamate concentration-effect curve at human recombinant mGlu2 receptors. The EC50 of JNJ-40068782 for potentiation of an EC20-equivalent concentration of glutamate was 143 nM. Although JNJ-40068782 did not affect binding of the orthosteric antagonist [(3)H]2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid (LY-341495), it did potentiate the binding of the agonist [(3)H](2S,2'R,3'R)-2-(2',3'-dicarboxylcyclopropyl)glycine (DCG-IV), demonstrating that it can allosterically affect binding at the agonist recognition site. The binding of [(3)H]JNJ-40068782 to human recombinant mGlu2 receptors in Chinese hamster ovary cells and rat brain receptors was saturable with a KD of ∼10 nM. In rat brain, the anatomic distribution of [(3)H]JNJ-40068782 was consistent with mGlu2 expression previously described and was most abundant in cortex and hippocampus. The ability of structurally unrelated PAMs to displace [(3)H]JNJ-40068782 suggests that PAMs may bind to common determinants within the same site. It is noteworthy that agonists also increased the binding affinity of [(3)H]JNJ-40068782. JNJ-40068782 influenced rat sleep-wake organization by decreasing rapid eye movement sleep with a lowest active dose of 3 mg/kg PO. In mice, JNJ-40068782 reversed phencyclidine-induced hyperlocomotion with an ED50 of 5.7 mg/kg s.c. Collectively, the present data demonstrate that JNJ-40068782 has utility in investigating the potential of mGlu2 modulation for the treatment of diseases characterized by disturbed glutamatergic signaling and highlight the value of [(3)H]JNJ-40068782 in exploring allosteric binding.


Assuntos
Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Piperidinas/farmacologia , Piridonas/farmacologia , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Aminoácidos/metabolismo , Animais , Autorradiografia , Ligação Competitiva/efeitos dos fármacos , Química Encefálica , Células CHO , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Cricetinae , Cricetulus , Ciclopropanos/metabolismo , Agonistas de Aminoácidos Excitatórios/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Marcação por Isótopo , Ligantes , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sono/efeitos dos fármacos , Trítio , Xantenos/metabolismo
10.
Drug Metab Dispos ; 41(12): 2066-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24003250

RESUMO

Allosteric modulation of G protein-coupled receptors has gained considerable attention in the drug discovery arena because it opens avenues to achieve greater selectivity over orthosteric ligands. We recently identified a series of positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu(5)) for the treatment of schizophrenia that exhibited robust heterotropic activation of CYP3A4 enzymatic activity. The prototypical compound from this series, 5-(4-fluorobenzyl)-2-((3-fluorophenoxy)methyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine (VU0448187), was found to activate CYP3A4 to >100% of its baseline intrinsic midazolam (MDZ) hydroxylase activity in vitro; activation was CYP3A substrate specific and mGlu(5) PAM dependent. Additional studies revealed the concentration-dependence of CYP3A activation by VU0448187 in multispecies hepatic and intestinal microsomes and hepatocytes, as well as a diminished effect observed in the presence of ketoconazole. Kinetic analyses of the effect of VU0448187 on MDZ metabolism in recombinant P450 or human liver microsomes resulted in a significant increase in V(max) (minimal change in K(m)) and required the presence of cytochrome b5. The atypical kinetics translated in vivo, as rats receiving an intraperitoneal administration of VU0448187 prior to MDZ treatment demonstrated a significant increase in circulating 1- and 4-hydroxy- midazolam (1-OH-MDZ, 4-OH-MDZ) levels compared with rats administered MDZ alone. The discovery of a potent substrate-selective activator of rodent CYP3A with an in vitro to in vivo translation serves to illuminate the impact of increasing intrinsic enzymatic activity of hepatic and extrahepatic CYP3A in rodents, and presents the basis to build models capable of framing the clinical relevance of substrate-dependent heterotropic activation.


Assuntos
Regulação Alostérica/fisiologia , Interações Medicamentosas/fisiologia , Fígado/enzimologia , Fígado/metabolismo , Midazolam/metabolismo , Oxigenases de Função Mista/metabolismo , Animais , Citocromo P-450 CYP3A/metabolismo , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/enzimologia , Cetoconazol/metabolismo , Cinética , Masculino , Camundongos , Microssomos/enzimologia , Microssomos/metabolismo , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Mol Pharmacol ; 81(2): 120-33, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22021324

RESUMO

Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu(5)) have emerged as an exciting new approach for the treatment of schizophrenia and other central nervous system (CNS) disorders. Of interest, some mGlu(5) PAMs act as pure PAMs, only potentiating mGlu(5) responses to glutamate whereas others [allosteric agonists coupled with PAM activity (ago-PAMs)] potentiate responses to glutamate and have intrinsic allosteric agonist activity in mGlu(5)-expressing cell lines. All mGlu(5) PAMs previously shown to have efficacy in animal models act as ago-PAMs in cell lines, raising the possibility that allosteric agonist activity is critical for in vivo efficacy. We have now optimized novel mGlu(5) pure PAMs that are devoid of detectable agonist activity and structurally related mGlu(5) ago-PAMs that activate mGlu(5) alone in cell lines. Studies of mGlu(5) PAMs in cell lines revealed that ago-PAM activity is dependent on levels of mGlu(5) receptor expression in human embryonic kidney 293 cells, whereas PAM potency is relatively unaffected by levels of receptor expression. Furthermore, ago-PAMs have no agonist activity in the native systems tested, including cortical astrocytes and subthalamic nucleus neurons and in measures of long-term depression at the hippocampal Schaffer collateral-CA1 synapse. Finally, studies with pure PAMs and ago-PAMs chemically optimized to provide comparable CNS exposure revealed that both classes of mGlu(5) PAMs have similar efficacy in a rodent model predictive of antipsychotic activity. These data suggest that the level of receptor expression influences the ability of mGlu(5) PAMs to act as allosteric agonists in vitro and that ago-PAM activity observed in cell-based assays may not be important for in vivo efficacy.


Assuntos
Sistema Nervoso Central/fisiologia , Receptores de Glutamato Metabotrópico/agonistas , Regulação Alostérica , Animais , Antipsicóticos , Astrócitos , Linhagem Celular , Sistema Nervoso Central/efeitos dos fármacos , Humanos , Camundongos , Neurônios , Receptor de Glutamato Metabotrópico 5
12.
J Pharmacol Exp Ther ; 342(1): 91-105, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22490380

RESUMO

All marketed antipsychotics act by blocking dopamine D(2) receptors. Fast dissociation from D(2) receptors may be one of the elements contributing to the lower incidence of extrapyramidal symptoms (EPS) exhibited by newer antipsychotics. Therefore, we screened for specific D(2) receptor blockers with a fast rate of dissociation. Radioligand binding experiments identified N-[1-(3,4-difluorobenzyl)piperidin-4-yl]-6-(trifluoromethyl)pyridazin-3-amine (JNJ-37822681) as a fast-dissociating D(2) ligand. Its D(2) receptor specificity was high compared with atypical antipsychotics, with little activity at receptors associated with unwanted effects [α(1), α(2), H(1), muscarinic, and 5-hydroxytryptamine (5-HT) type 2C] and for receptors that may interfere with the effects of D(2) antagonism (D(1), D(3), and 5-HT(2A)). JNJ-37822681 occupied D(2) receptors in rat brain at relatively low doses (ED(50) 0.39 mg/kg) and was effective in animal models of psychosis (e.g., inhibition of apomorphine-induced stereotypy or D-amphetamine/phencyclidine-induced hyperlocomotion). Prolactin levels increased from an ED(50) (0.17 mg/kg, peripheral D(2) receptors) close to the ED(50) required for apomorphine antagonism (0.19 mg/kg, central D(2) receptors), suggesting excellent brain disposition and minimal prolactin release at therapeutic doses. JNJ-37822681 induced catalepsy and inhibited avoidance behavior, but with a specificity margin relative to apomorphine antagonism that was larger than that obtained for haloperidol and similar to that obtained for olanzapine. This larger specificity margin (compared with haloperidol) may reflect lower EPS liability and less behavioral suppression after JNJ-37822681. JNJ-37822681 is a novel, potent, specific, centrally active, fast-dissociating D(2) antagonist with optimal brain disposition, and it is the first compound that allows the evaluation of the potential value of fast D(2) antagonism for the treatment of schizophrenia and bipolar disorder.


Assuntos
Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Piperidinas/farmacologia , Piridazinas/farmacologia , Esquizofrenia/tratamento farmacológico , Animais , Antipsicóticos/farmacologia , Apomorfina/antagonistas & inibidores , Apomorfina/metabolismo , Comportamento Animal/efeitos dos fármacos , Benzodiazepinas/efeitos adversos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Catalepsia/metabolismo , Células Cultivadas , Cricetinae , Feminino , Haloperidol/efeitos adversos , Haloperidol/metabolismo , Humanos , Ligantes , Locomoção/efeitos dos fármacos , Masculino , Olanzapina , Prolactina/farmacologia , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Dopamina D2/metabolismo , Esquizofrenia/metabolismo , Serotonina/metabolismo
14.
Bioorg Med Chem Lett ; 22(20): 6481-5, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22981332

RESUMO

We report the optimization of a series of non-MPEP site metabotropic glutamate receptor 5 (mGlu(5)) positive allosteric modulators (PAMs) based on a simple acyclic ether series. Modifications led to a gain of MPEP site interaction through incorporation of a chiral amide in conjunction with a nicotinamide core. A highly potent PAM, 8v (VU0404251), was shown to be efficacious in a rodent model of psychosis. These studies suggest that potent PAMs within topologically similar chemotypes can be developed to preferentially interact or not interact with the MPEP allosteric binding site.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Antipsicóticos/química , Antipsicóticos/farmacologia , Niacinamida/química , Niacinamida/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Sítio Alostérico/efeitos dos fármacos , Animais , Antipsicóticos/uso terapêutico , Éteres/química , Éteres/farmacologia , Éteres/uso terapêutico , Humanos , Niacinamida/uso terapêutico , Transtornos Psicóticos/tratamento farmacológico , Ratos , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/química , Relação Estrutura-Atividade
15.
J Pharmacol Exp Ther ; 336(2): 560-74, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21084390

RESUMO

The α(7) nicotinic acetylcholine receptor (nAChR) is a potential therapeutic target for the treatment of cognitive deficits associated with schizophrenia, Alzheimer's disease, Parkinson's disease, and attention-deficit/hyperactivity disorder. Activation of α(7) nAChRs improved sensory gating and cognitive function in animal models and in early clinical trials. Here we describe the novel highly selective α(7) nAChR positive allosteric modulator, 2-[[4-fluoro-3-(trifluoromethyl)phenyl]amino]-4-(4-pyridinyl)-5-thiazolemethanol (JNJ-1930942). This compound enhances the choline-evoked rise in intracellular Ca(2+) levels in the GH4C1 cell line expressing the cloned human α(7) nAChR. JNJ-1930942 does not act on α4ß2, α3ß4 nAChRs or on the related 5-HT3A channel. Electrophysiological assessment in the GH4C1 cell line shows that JNJ-1930942 increases the peak and net charge response to choline, acetylcholine, and N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide (PNU-282987). The potentiation is obtained mainly by affecting the receptor desensitization characteristics, leaving activation and deactivation kinetics as well as recovery from desensitization relatively unchanged. Choline efficacy is increased over its full concentration response range, and choline potency is increased more than 10-fold. The potentiating effect is α(7) channel-dependent, because it is blocked by the α(7) antagonist methyllycaconitine. Moreover, in hippocampal slices, JNJ-1930942 enhances neurotransmission at hippocampal dentate gyrus synapses and facilitates the induction of long-term potentiation of electrically evoked synaptic responses in the dentate gyrus. In vivo, JNJ-1930942 reverses a genetically based auditory gating deficit in DBA/2 mice. JNJ-1930942 will be a useful tool to study the therapeutic potential of α(7) nAChR potentiation in central nervous system disorders in which a deficit in α(7) nAChR neurotransmission is hypothesized to be involved.


Assuntos
Piridinas/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Tiazóis/farmacologia , Regulação Alostérica , Animais , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Potenciais Evocados Auditivos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Agonistas Nicotínicos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7
17.
Neuroinformatics ; 19(4): 737-750, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34374965

RESUMO

Synaptic dysfunction is a hallmark of various neurodegenerative and neurodevelopmental disorders. To interrogate synapse function in a systematic manner, we have established an automated high-throughput imaging pipeline based on fluorescence microscopy acquisition and image analysis of electrically stimulated synaptic transmission in neuronal cultures. Identification and measurement of synaptic signal fluctuations is achieved by means of an image analysis algorithm based on singular value decomposition. By exploiting the synchronicity of the evoked responses, the algorithm allows disentangling distinct temporally correlated patterns of firing synapse populations or cell types that are present in the same recording. We demonstrate the performance of the analysis with a pilot compound screen and show that the multiparametric readout allows classifying treatments by their spatiotemporal fingerprint. The image analysis and visualization software has been made publicly available on Github ( https://www.github.com/S3Toolbox ). The streamlined automation of multi-well image acquisition, electrical stimulation, analysis, and meta-data warehousing facilitates large-scale synapse-oriented screens and, in doing so, it will accelerate the drug discovery process.


Assuntos
Neurônios , Sinapses , Algoritmos , Processamento de Imagem Assistida por Computador , Software
18.
ACS Omega ; 6(35): 22997-23006, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34514269

RESUMO

Glutamate hyperfunction is implicated in multiple neurological and psychiatric diseases. Activation of the mGlu2 receptor results in reduced glutamate release and decreased excitability representing a promising novel therapeutic agent for the treatment of disorders such as epilepsy, schizophrenia, mood, anxiety, and other neuropsychiatric disorders. We have previously reported substantial efforts leading to potent and selective mGlu2 PAMs from different chemical series. Herein, the discovery and optimization of a novel series of imidazopyrazinone mGlu2 PAMs are reported. This new scaffold originated from computational searching of fragment databases and comparison with our previously explored scaffolds. Optimization guided by our robust understanding of SAR from former series led to potent, selective, and brain-penetrant compounds.

19.
Bioorg Med Chem Lett ; 20(1): 175-9, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19932615

RESUMO

Imidazo[1,2-a]pyridines were identified via their shape and electrostatic similarity as novel positive allosteric modulators of the metabotropic glutamate 2 receptor. The subsequent synthesis and SAR are described. Potent, selective and metabolically stable compounds were found representing a promising avenue for current further studies.


Assuntos
Imidazóis/química , Piridinas/química , Piridonas/química , Receptores de Glutamato Metabotrópico/química , Regulação Alostérica , Animais , Humanos , Microssomos Hepáticos/metabolismo , Piridinas/síntese química , Piridinas/farmacologia , Ratos , Receptores de Glutamato Metabotrópico/metabolismo , Eletricidade Estática , Relação Estrutura-Atividade
20.
ACS Med Chem Lett ; 11(3): 303-308, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32184961

RESUMO

Starting from two weak mGlu2 receptor positive allosteric modulator (PAM) HTS hits (4 and 5), a molecular hybridization strategy resulted in the identification of a novel spiro-oxindole piperidine series with improved activity and metabolic stability. Scaffold hopping around the spiro-oxindole core identified the 3-(azetidin-3-yl)-1H-benzimidazol-2-one as bioisoster. Medicinal chemistry optimization of these two novel chemotypes resulted in the identification of potent, selective, orally bioavailable, and brain penetrant mGluR2 PAMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA