Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892024

RESUMO

Inflammation, demyelination, and axonal damage to the central nervous system (CNS) are the hallmarks of multiple sclerosis (MS) and its representative animal model, experimental autoimmune encephalomyelitis (EAE). There is scientific evidence for the involvement of growth hormone (GH) in autoimmune regulation. Previous data on the relationship between the GH/insulin like growth factor-1 (IGF-1) axis and MS/EAE are inconclusive; therefore, the aim of our study was to investigate the changes in the GH axis during acute monophasic EAE. The results show that the gene expression of Ghrh and Sst in the hypothalamus does not change, except for Npy and Agrp, while at the pituitary level the Gh, Ghrhr and Ghr genes are upregulated. Interestingly, the cell volume of somatotropic cells in the pituitary gland remains unchanged at the peak of the disease. We found elevated serum GH levels in association with low IGF-1 concentration and downregulated Ghr and Igf1r expression in the liver, indicating a condition resembling GH resistance. This is likely due to inadequate nutrient intake at the peak of the disease when inflammation in the CNS is greatest. Considering that GH secretion is finely regulated by numerous central and peripheral signals, the involvement of the GH/IGF-1 axis in MS/EAE should be thoroughly investigated for possible future therapeutic strategies, especially with a view to improving EAE disease.


Assuntos
Encefalomielite Autoimune Experimental , Hormônio do Crescimento , Fator de Crescimento Insulin-Like I , Animais , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/genética , Feminino , Ratos , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipófise/metabolismo , Hipófise/patologia , Receptores da Somatotropina/metabolismo , Receptores da Somatotropina/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Esclerose Múltipla/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento/genética , Fígado/metabolismo , Fígado/patologia , Modelos Animais de Doenças
2.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892383

RESUMO

Ethyl pyruvate (EP) is a redox-active compound that has been previously shown to be effective in restraining immune hyperactivity in animal models of various autoimmune and chronic inflammatory diseases. Importantly, EP has also been proven to have a potent tolerogenic effect on dendritic cells (DCs). Here, the influence of EP on the signaling pathways in DCs relevant for their tolerogenicity, including anti-inflammatory NRF2 and pro-inflammatory NF-κB, was explored. Specifically, the effects of EP on DCs obtained by GM-CSF-directed differentiation of murine bone marrow precursor cells and matured under the influence of lipopolysaccharide (LPS) were examined via immunocytochemistry and RT-PCR. EP counteracted LPS-imposed morphological changes and down-regulated the LPS-induced expression of pro-inflammatory mediators in DCs. While it reduced the activation of NF-κB, EP potentiated NRF2 and downstream antioxidative molecules, thus implying the regulation of NRF2 signaling pathways as the major reason for the tolerizing effects of EP on DCs.


Assuntos
Células Dendríticas , Lipopolissacarídeos , Fator 2 Relacionado a NF-E2 , NF-kappa B , Piruvatos , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Piruvatos/farmacologia , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Tolerância Imunológica/efeitos dos fármacos , Células Cultivadas
3.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901691

RESUMO

A growing body of evidence suggests that hyperbaric oxygenation (HBO) may affect the activity of adult neural stem cells (NSCs). Since the role of NSCs in recovery from brain injury is still unclear, the purpose of this study was to investigate the effects of sensorimotor cortex ablation (SCA) and HBO treatment (HBOT) on the processes of neurogenesis in the adult dentate gyrus (DG), a region of the hippocampus that is the site of adult neurogenesis. Ten-week-old Wistar rats were divided into groups: Control (C, intact animals), Sham control (S, animals that underwent the surgical procedure without opening the skull), SCA (animals in whom the right sensorimotor cortex was removed via suction ablation), and SCA + HBO (operated animals that passed HBOT). HBOT protocol: pressure applied at 2.5 absolute atmospheres for 60 min, once daily for 10 days. Using immunohistochemistry and double immunofluorescence labeling, we show that SCA causes significant loss of neurons in the DG. Newborn neurons in the subgranular zone (SGZ), inner-third, and partially mid-third of the granule cell layer are predominantly affected by SCA. HBOT decreases the SCA-caused loss of immature neurons, prevents reduction of dendritic arborization, and increases proliferation of progenitor cells. Our results suggest a protective effect of HBO by reducing the vulnerability of immature neurons in the adult DG to SCA injury.


Assuntos
Lesões Encefálicas , Oxigenoterapia Hiperbárica , Células-Tronco Neurais , Ratos , Animais , Ratos Wistar , Células-Tronco Neurais/fisiologia , Hipocampo , Neurônios/fisiologia , Neurogênese/fisiologia , Giro Denteado
4.
Cell Mol Neurobiol ; 42(6): 1965-1981, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33761054

RESUMO

Dexamethasone (DEX) is frequently used to treat women at risk of preterm delivery, but although indispensable for the completion of organ maturation in the fetus, antenatal DEX treatment may exert adverse sex-dimorphic neurodevelopmental effects. Literature findings implicated oxidative stress in adverse effects of DEX treatment. Purinergic signaling is involved in neurodevelopment and controlled by ectonucleotidases, among which in the brain the most abundant are ectonucleoside triphosphate diphosphohydrolase 1 (NTPDase1/CD39) and ecto-5'-nucleotidase (e5'NT/CD73), which jointly dephosphorylate ATP to adenosine. They are also involved in cell adhesion and migration, processes integral to brain development. Upregulation of CD39 and CD73 after DEX treatment was reported in adult rat hippocampus. We investigated the effects of maternal DEX treatment on CD39 and CD73 expression and enzymatic activity in the rat fetal brain of both sexes, in the context of oxidative status of the brain tissue. Fetuses were obtained at embryonic day (ED) 21, from Wistar rat dams treated with 0.5 mg DEX/kg/day, at ED 16, 17, and 18, and brains were processed and used for further analysis. Sex-specific increase in CD39 and CD73 expression and in the corresponding enzyme activities was induced in the brain of antenatally DEX-treated fetuses, more prominently in males. The oxidative stress induction after antenatal DEX treatment was confirmed in both sexes, although showing a slight bias in males. Due to the involvement of purinergic system in crucial neurodevelopmental processes, future investigations are needed to determine the role of these observed changes in the adverse effects of antenatal DEX treatment.


Assuntos
5'-Nucleotidase , Apirase , Dexametasona , Exposição Materna , Fatores Sexuais , 5'-Nucleotidase/metabolismo , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Encéfalo/metabolismo , Dexametasona/farmacologia , Feminino , Feto/efeitos dos fármacos , Masculino , Gravidez , Ratos , Ratos Wistar , Regulação para Cima
5.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408922

RESUMO

Neuroinflammation and microglial activation, common components of most neurodegenerative diseases, can be imitated in vitro by challenging microglia cells with Lps. We here aimed to evaluate the effects of agmatine pretreatment on Lps-induced oxidative stress in a mouse microglial BV-2 cell line. Our findings show that agmatine suppresses nitrosative and oxidative burst in Lps-stimulated microglia by reducing iNOS and XO activity and decreasing O2- levels, arresting lipid peroxidation, increasing total glutathione content, and preserving GR and CAT activity. In accordance with these results, agmatine suppresses inflammatory NF-kB, and stimulates antioxidant Nrf2 pathway, resulting in decreased TNF, IL-1 beta, and IL-6 release, and reduced iNOS and COX-2 levels. Together with increased ARG1, CD206 and HO-1 levels, our results imply that, in inflammatory conditions, agmatine pushes microglia towards an anti-inflammatory phenotype. Interestingly, we also discovered that agmatine alone increases lipid peroxidation end product levels, induces Nrf2 activation, increases total glutathione content, and GPx activity. Thus, we hypothesize that some of the effects of agmatine, observed in activated microglia, may be mediated by induced oxidative stress and adaptive response, prior to Lps stimulation.


Assuntos
Agmatina , Fator 2 Relacionado a NF-E2 , Agmatina/metabolismo , Agmatina/farmacologia , Animais , Glutationa/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo
6.
Brain Behav Immun ; 89: 233-244, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32592862

RESUMO

Multiple sclerosis develops during reproductive years in a sex-specific manner. Various neuroendocrine changes have been described in this inflammatory, demyelinating, and debilitating disease. We here aimed to determine the extent and sex specificity of alterations in the hypothalamic-pituitary-gonadal axis in the rat model of multiple sclerosis named experimental autoimmune encephalomyelitis. During the disease course, the hypothalamic tissue showed transient upregulation of inflammatory marker genes Gfap, Cd68, Ccl2, and Il1b in both sexes, but accompanied by sex-specific downregulation of Kiss1 (in females only) and Gnrh1 (in males only) expression. In females, the expression of gonadotrope-specific genes Lhb, Cga, and Gnrhr was also inhibited, accompanied by decreased basal but not stimulated serum luteinizing hormone levels and a transient arrest of the estrous cycle. In contrast, Fshb expression and serum progesterone levels were transiently elevated, findings consistent with the maintenance of the corpora lutea, and elevated immunohistochemical labeling of ovarian StAR, a rate limiting protein in steroidogenic pathway. In males, downregulation of Gnrhr expression and basal and stimulated serum luteinizing hormone and testosterone levels were accompanied by inhibited testicular StAR protein expression. We propose that inflammation of hypothalamic tissue downregulates Kiss1 and Gnrh1 expression in females and males, respectively, leading to sex-specific changes downstream the axis.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Feminino , Hipotálamo , Hormônio Luteinizante , Masculino , Ratos
7.
J Neurosci Res ; 96(6): 1021-1042, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29446144

RESUMO

Multiple sclerosis (MS) is a chronic, progressive disorder of the central nervous system (CNS) that affects more than two million people worldwide. Several animal models resemble MS pathology; the most employed are experimental autoimmune encephalomyelitis (EAE) and toxin- and/or virus-induced demyelination. In this review we will summarize our knowledge on the utility of different animal models in MS research. Although animal models cannot replicate the complexity and heterogeneity of the MS pathology, they have proved to be useful for the development of several drugs approved for treatment of MS patients. This review focuses on EAE because it represents both clinical and pathological features of MS. During the past decades, EAE has been effective in illuminating various pathological processes that occur during MS, including inflammation, CNS penetration, demyelination, axonopathy, and neuron loss mediated by immune cells.


Assuntos
Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/etiologia , Esclerose Múltipla/etiologia , Animais , Encefalomielite Autoimune Experimental/patologia , Humanos , Esclerose Múltipla/patologia
8.
Neurochem Res ; 43(5): 1020-1034, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29574670

RESUMO

Kv1.3 is a voltage gated potassium channel that has been implicated in pathophysiology of multiple sclerosis (MS). In the present study we investigated temporal and cellular expression pattern of this channel in the lumbar part of spinal cords of animals with experimental autoimmune encephalomyelitis (EAE), animal model of MS. EAE was actively induced in female Dark Agouti rats. Expression of Kv1.3 was analyzed at different time points of disease progression, at the onset, peak and end of EAE. We here show that Kv1.3 increased by several folds at the peak of EAE at both gene and protein level. Double immunofluorescence analyses demonstrated localization of Kv1.3 on activated microglia, macrophages, and reactive astrocytes around inflammatory lesions. In vitro experiments showed that pharmacological block of Kv1.3 in activated astrocytes suppresses the expression of proinflammatory mediators, suggesting a role of this channel in inflammation. Our results support the hypothesis that Kv1.3 may be a therapeutic target of interest for MS and add astrocytes to the list of cells whose activation would be suppressed by inhibiting Kv1.3 in inflammatory conditions.


Assuntos
Astrócitos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Canal de Potássio Kv1.3/biossíntese , Animais , Astrócitos/patologia , Astrócitos/ultraestrutura , Linhagem Celular Tumoral , Sobrevivência Celular , Progressão da Doença , Encefalomielite Autoimune Experimental/patologia , Feminino , Regulação da Expressão Gênica , Inflamação/patologia , Canal de Potássio Kv1.3/genética , Macrófagos/metabolismo , Microglia/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Regulação para Cima
9.
J Neurosci Res ; 95(4): 1053-1066, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27714837

RESUMO

It is widely accepted that adenosine triphosphate (ATP) acts as a universal danger-associated molecular pattern with several known mechanisms for immune cell activation. In the central nervous system, ATP activates microglia and astrocytes and induces a neuroinflammatory response. The aim of the present study was to describe responses of isolated astrocytes to increasing concentrations of ATP (5 µM to 1 mM), which were intended to mimic graded intensity of the extracellular stimulus. The results show that ATP induces graded activation response of astrocytes in terms of the cell proliferation, stellation, shape remodeling, and underlying actin and GFAP filament rearrangement, although the changes occurred without an apparent increase in GFAP and actin protein expression. On the other hand, ATP in the range of applied concentrations did not evoke IL-1ß release from cultured astrocytes, nor did it modify the release from LPS and LPS+IFN-γ-primed astrocytes. ATP did not promote astrocyte migration in the wound-healing assay, nor did it increase production of reactive oxygen and nitrogen species and lipid peroxidation. Instead, ATP strengthened the antioxidative defense of astrocytes by inducing Cu/ZnSOD and MnSOD activities and by increasing their glutathione content. Our current results suggest that although ATP triggers several attributes of activated astrocytic phenotype with a magnitude that increases with the concentration, it is not sufficient to induce full-blown reactive phenotype of astrocytes in vitro. © 2016 Wiley Periodicals, Inc.


Assuntos
Trifosfato de Adenosina/farmacologia , Astrócitos/efeitos dos fármacos , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Anexina A5/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Proteína Glial Fibrilar Ácida/metabolismo , Interferon gama/farmacologia , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Malondialdeído/metabolismo , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Cicatrização/efeitos dos fármacos
10.
J Theor Biol ; 370: 151-6, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25665716

RESUMO

Fractal and grey level co-occurrence matrix (GLCM) analysis represent two mathematical computer-assisted algorithms that are today thought to be able to accurately detect and quantify changes in tissue architecture during various physiological and pathological processes. However, despite their numerous applications in histology and pathology, their sensitivity, specificity and validity regarding evaluation of brain tissue remain unclear. In this article we present the results indicating that certain parameters of fractal and GLCM analysis have high discriminatory ability in distinguishing two morphologically similar regions of rat hippocampus: stratum lacunosum-moleculare and stratum radiatum. Fractal and GLCM algorithms were performed on a total of 240 thionine-stained hippocampus micrographs of 12 male Wistar albino rats. 120 digital micrographs represented stratum lacunosum-moleculare, and another 120 stratum radiatum. For each image, 7 parameters were calculated: fractal dimension, lacunarity, GLCM angular second moment, GLCM contrast, inverse difference moment, GLCM correlation, and GLCM variance. GLCM variance (VAR) resulted in the largest area under the Receiver operating characteristic (ROC) curve of 0.96, demonstrating an outstanding discriminatory power in analysis of stratum lacunosum-moleculare (average VAR equaled 478.1 ± 179.8) and stratum radiatum (average VAR of 145.9 ± 59.2, p < 0.0001). For the criterion VAR ≤ 227.5, sensitivity and specificity were 90% and 86.7%, respectively. GLCM correlation as a parameter also produced large area under the ROC curve of 0.95. Our results are in accordance with the findings of our previous study regarding brain white mass fractal and textural analysis. GLCM algorithm as an image analysis method has potentially high applicability in structural analysis of brain tissue cytoarcitecture.


Assuntos
Algoritmos , Fractais , Hipocampo/anatomia & histologia , Animais , Fenotiazinas/metabolismo , Curva ROC , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA