RESUMO
Recognition of a pathogen avirulence (AVR) effector protein by a cognate plant resistance (R) protein triggers a set of immune responses that render the plant resistant. Pathogens can escape this so-called Effector-Triggered Immunity (ETI) by different mechanisms including the deletion or loss-of-function mutation of the AVR gene, the incorporation of point mutations that allow recognition to be evaded while maintaining virulence function, and the acquisition of new effectors that suppress AVR recognition. The Dothideomycete Leptosphaeria maculans, causal agent of oilseed rape stem canker, is one of the few fungal pathogens where suppression of ETI by an AVR effector has been demonstrated. Indeed, AvrLm4-7 suppresses Rlm3- and Rlm9-mediated resistance triggered by AvrLm3 and AvrLm5-9, respectively. The presence of AvrLm4-7 does not impede AvrLm3 and AvrLm5-9 expression, and the three AVR proteins do not appear to physically interact. To decipher the epistatic interaction between these L. maculans AVR effectors, we determined the crystal structure of AvrLm5-9 and obtained a 3D model of AvrLm3, based on the crystal structure of Ecp11-1, a homologous AVR effector candidate from Fulvia fulva. Despite a lack of sequence similarity, AvrLm5-9 and AvrLm3 are structural analogues of AvrLm4-7 (structure previously characterized). Structure-informed sequence database searches identified a larger number of putative structural analogues among L. maculans effector candidates, including the AVR effector AvrLmS-Lep2, all produced during the early stages of oilseed rape infection, as well as among effector candidates from other phytopathogenic fungi. These structural analogues are named LARS (for Leptosphaeria AviRulence and Suppressing) effectors. Remarkably, transformants of L. maculans expressing one of these structural analogues, Ecp11-1, triggered oilseed rape immunity in several genotypes carrying Rlm3. Furthermore, this resistance could be suppressed by AvrLm4-7. These results suggest that Ecp11-1 shares a common activity with AvrLm3 within the host plant which is detected by Rlm3, or that the Ecp11-1 structure is sufficiently close to that of AvrLm3 to be recognized by Rlm3.
Assuntos
Brassica napus , Doenças das Plantas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Virulência/genéticaRESUMO
Competence allows bacteria to internalize exogenous DNA fragments for the acquisition of new phenotypes such as antibiotic resistance or virulence traits. In most streptococci, competence is regulated by ComRS signaling, a system based on the mature ComS pheromone (XIP), which is internalized to activate the (R)RNPP-type ComR sensor by triggering dimerization and DNA binding. Cross-talk analyses demonstrated major differences of selectivity between ComRS systems and raised questions concerning the mechanism of pheromone-sensor recognition and coevolution. Here, we decipher the molecular determinants of selectivity of the closely related ComRS systems from Streptococcus thermophilus and Streptococcus vestibularis Despite high similarity, we show that the divergence in ComR-XIP interaction does not allow reciprocal activation. We perform the structural analysis of the ComRS system from S. vestibularis. Comparison with its ortholog from S. thermophilus reveals an activation mechanism based on a toggle switch involving the recruitment of a key loop by the XIP C terminus. Together with a broad mutational analysis, we identify essential residues directly involved in peptide binding. Notably, we generate a ComR mutant that displays a fully reversed selectivity toward the heterologous pheromone with only five point mutations, as well as other ComR variants featuring XIP bispecificity and/or neofunctionalization for hybrid XIP peptides. We also reveal that a single XIP mutation relaxes the strictness of ComR activation, suggesting fast adaptability of molecular communication phenotypes. Overall, this study is paving the way toward the rational design or directed evolution of artificial ComRS systems for a range of biotechnological and biomedical applications.
Assuntos
Feromônios/metabolismo , Transdução de Sinais , Streptococcus/metabolismo , Sequência de Aminoácidos , Luciferases/metabolismo , Modelos Moleculares , Mutação Puntual/genética , Estrutura Secundária de Proteína , Homologia Estrutural de ProteínaRESUMO
Phosphoglucose isomerase (PGI) is a cytosolic enzyme that catalyzes the reversible interconversion of d-glucose 6-phosphate and d-fructose 6-phosphate in glycolysis. Outside the cell, PGI is also known as autocrine motility factor (AMF), a cytokine secreted by a large variety of tumor cells that stimulates motility of cancer cells in vitro and metastases development in vivo. Human PGI and AMF are strictly identical proteins both in terms of sequence and 3D structure, and AMF activity is known to involve, at least in part, the enzymatic active site. Hence, with the purpose of finding new strong AMF-PGI inhibitors that could be potentially used as anticancer agents and/or as bioreceptors for carbohydrate-based electrochemical biosensors, we report in this study the synthesis and kinetic evaluation of several new human PGI inhibitors derived from the synthon 5-phospho-d-arabinono-1,4-lactone. Although not designed as high-energy intermediate analogue inhibitors of the enzyme catalyzed isomerization reaction, several of these N-substituted 5-phosphate-d-arabinonamide derivatives appears as new strong PGI inhibitors. For one of them, we report its crystal structure in complex with human PGI at 2.38 Å. Detailed analysis of its interactions at the active site reveals a new binding mode and shows that human PGI is relatively tolerant for modified inhibitors at the "head" C-1 part, offering promising perspectives for the future design of carbohydrate-based biosensors.
Assuntos
Inibidores Enzimáticos/uso terapêutico , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Fosfatos/síntese química , Fosfatos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Humanos , Fosfatos/farmacologia , Relação Estrutura-AtividadeRESUMO
[This corrects the article DOI: 10.1371/journal.ppat.1005980.].
RESUMO
tRNAs are synthesized as precursor RNAs that have to undergo processing steps to become functional. Yeast Trz1 is a key endoribonuclease involved in the 3Î maturation of tRNAs in all domains of life. It is a member of the ß-lactamase family of RNases, characterized by an HxHxDH sequence motif involved in coordination of catalytic Zn-ions. The RNase Z family consists of two subfamilies: the short (250-400 residues) and the long forms (about double in size). Short form RNase Z enzymes act as homodimers: one subunit embraces tRNA with a protruding arm, while the other provides the catalytic site. The long form is thought to contain two fused ß-lactamase domains within a single polypeptide. Only structures of short form RNase Z enzymes are known. Here we present the 3.1 Å crystal structure of the long-form Trz1 from Saccharomyces cerevisiae. Trz1 is organized into two ß-lactamase domains connected by a long linker. The N-terminal domain has lost its catalytic residues, but retains the long flexible arm that is important for tRNA binding, while it is the other way around in the C-terminal domain. Trz1 likely evolved from a duplication and fusion of the gene encoding the monomeric short form RNase Z.
Assuntos
Endorribonucleases/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Evolução Molecular , Modelos Moleculares , Fases de Leitura Aberta , Conformação Proteica , Domínios Proteicos , RNA de Transferência/metabolismo , Proteínas Recombinantes de Fusão/química , Saccharomyces cerevisiae/enzimologia , Alinhamento de Sequência , Homologia de Sequência de AminoácidosRESUMO
[This corrects the article DOI: 10.1371/journal.ppat.1005779.].
RESUMO
Bacteria use quorum sensing to coordinate adaptation properties, cell fate or commitment to sporulation. The infectious cycle of Bacillus thuringiensis in the insect host is a powerful model to investigate the role of quorum sensing in natural conditions. It is tuned by communication systems regulators belonging to the RNPP family and directly regulated by re-internalized signaling peptides. One such RNPP regulator, NprR, acts in the presence of its cognate signaling peptide NprX as a transcription factor, regulating a set of genes involved in the survival of these bacteria in the insect cadaver. Here, we demonstrate that, in the absence of NprX and independently of its transcriptional activator function, NprR negatively controls sporulation. NprR inhibits expression of Spo0A-regulated genes by preventing the KinA-dependent phosphorylation of the phosphotransferase Spo0F, thus delaying initiation of the sporulation process. This NprR function displays striking similarities with the Rap proteins, which also belong to the RNPP family, but are devoid of DNA-binding domain and indirectly control gene expression via protein-protein interactions in Bacilli. Conservation of the Rap residues directly interacting with Spo0F further suggests a common inhibition of the sporulation phosphorelay. The crystal structure of apo NprR confirms that NprR displays a highly flexible Rap-like structure. We propose a molecular regulatory mechanism in which key residues of the bifunctional regulator NprR are directly and alternatively involved in its two functions. NprX binding switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. NprR thus tightly coordinates sporulation and necrotrophism, ensuring survival and dissemination of the bacteria during host infection.
Assuntos
Bacillus thuringiensis/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Estágios do Ciclo de Vida/fisiologia , Percepção de Quorum/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Esporos Bacterianos/metabolismoRESUMO
In Gram-positive bacteria, cell-to-cell communication mainly relies on extracellular signaling peptides, which elicit a response either indirectly, by triggering a two-component phosphorelay, or directly, by binding to cytoplasmic effectors. The latter comprise the RNPP family (Rgg and original regulators Rap, NprR, PrgX and PlcR), whose members regulate important bacterial processes such as sporulation, conjugation, and virulence. RNPP proteins are increasingly considered as interesting targets for the development of new antibacterial agents. These proteins are characterized by a TPR-type peptide-binding domain, and except for Rap proteins, also contain an N-terminal HTH-type DNA-binding domain and display a transcriptional activity. Here, we elucidate the structure-function relationship of the transcription factor ComR, a new member of the RNPP family, which positively controls competence for natural DNA transformation in streptococci. ComR is directly activated by the binding of its associated pheromone XIP, the mature form of the comX/sigX-inducing-peptide ComS. The crystal structure analysis of ComR from Streptococcus thermophilus combined with a mutational analysis and in vivo assays allows us to propose an original molecular mechanism of the ComR regulation mode. XIP-binding induces release of the sequestered HTH domain and ComR dimerization to allow DNA binding. Importantly, we bring evidence that this activation mechanism is conserved and specific to ComR orthologues, demonstrating that ComR is not an Rgg protein as initially proposed, but instead constitutes a new member of the RNPP family. In addition, identification of XIP and ComR residues important for competence activation constitutes a crucial step towards the design of antagonistic strategies to control gene exchanges among streptococci.
Assuntos
Proteínas de Bactérias/metabolismo , Comunicação Celular , Percepção de Quorum/fisiologia , Streptococcus thermophilus/fisiologia , Proteínas de Bactérias/química , Comunicação Celular/fisiologia , Cristalografia por Raios X , Competência de Transformação por DNA , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Bacteriana da Expressão Gênica , Feromônios/metabolismoRESUMO
Proteomic studies have established that Trz1, Nuc1 and mutarotase form a complex in yeast. Trz1 is a ß-lactamase-type RNase composed of two ß-lactamase-type domains connected by a long linker that is responsible for the endonucleolytic cleavage at the 3'-end of tRNAs during the maturation process (RNase Z activity); Nuc1 is a dimeric mitochondrial nuclease involved in apoptosis, while mutarotase (encoded by YMR099C) catalyzes the conversion between the α- and ß-configuration of glucose-6-phosphate. Using gel filtration, small angle X-ray scattering and electron microscopy, we demonstrated that Trz1, Nuc1 and mutarotase form a very stable heterohexamer, composed of two copies of each of the three subunits. A Nuc1 homodimer is at the center of the complex, creating a two-fold symmetry and interacting with both Trz1 and mutarotase. Enzymatic characterization of the ternary complex revealed that the activities of Trz1 and mutarotase are not affected by complex formation, but that the Nuc1 activity is completely inhibited by mutarotase and partially by Trz1. This suggests that mutarotase and Trz1 might be regulators of the Nuc1 apoptotic nuclease activity.
Assuntos
Carboidratos Epimerases/química , Endonucleases/química , Endorribonucleases/química , Exonucleases/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Carboidratos Epimerases/genética , Endonucleases/genética , Endorribonucleases/genética , Exonucleases/genética , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Espalhamento a Baixo ÂnguloRESUMO
Most of the factors involved in translation (tRNA, rRNA and proteins) are subject to post-transcriptional and post-translational modifications, which participate in the fine-tuning and tight control of ribosome and protein synthesis processes. In eukaryotes, Trm112 acts as an obligate activating platform for at least four methyltransferases (MTase) involved in the modification of 18S rRNA (Bud23), tRNA (Trm9 and Trm11) and translation termination factor eRF1 (Mtq2). Trm112 is then at a nexus between ribosome synthesis and function. Here, we present a structure-function analysis of the Trm9-Trm112 complex, which is involved in the 5-methoxycarbonylmethyluridine (mcm(5)U) modification of the tRNA anticodon wobble position and hence promotes translational fidelity. We also compare the known crystal structures of various Trm112-MTase complexes, highlighting the structural plasticity allowing Trm112 to interact through a very similar mode with its MTase partners, although those share less than 20% sequence identity.
Assuntos
Proteínas de Saccharomyces cerevisiae/química , tRNA Metiltransferases/química , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Yarrowia/enzimologia , tRNA Metiltransferases/metabolismoRESUMO
The yeast KEOPS protein complex comprising Kae1, Bud32, Cgi121, Pcc1 and Gon7 is responsible for the essential tRNA threonylcarbamoyladenosine (t(6)A) modification. Deletion of genes coding for the KEOPS subunits also affects telomere elongation and transcriptional regulation. In the present work, the crystal structure of Bud32/Cgi121 in complex with ADP revealed that ADP is bound in the catalytic site of Bud32 in a canonical manner characteristic of Protein Kinase A (PKA) family proteins. We found that Gon7 forms a stable heterodimer with Pcc1 and report the crystal structure of the Pcc1-Gon7 heterodimer. Gon7 interacts with the same Pcc1 region engaged in the archaeal Pcc1 homodimer. We further show that yeast KEOPS, unlike its archaeal counterpart, exists as a heteropentamer in which Gon7, Pcc1, Kae1, Bud32 and Cgi121 also adopt a linear arrangement. We constructed a model of yeast KEOPS that provides structural insight into the role of Gon7. The model also revealed the presence of a highly positively charged crater surrounding the entrance of Kae1 that likely binds tRNA.
Assuntos
Proteínas Serina-Treonina Quinases/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Difosfato de Adenosina/química , Sequência de Aminoácidos , Proteínas Arqueais/química , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Difração de Raios XRESUMO
The avirulence gene AvrLm4-7 of Leptosphaeria maculans, the causal agent of stem canker in Brassica napus (oilseed rape), confers a dual specificity of recognition by two resistance genes (Rlm4 and Rlm7) and is strongly involved in fungal fitness. In order to elucidate the biological function of AvrLm4-7 and understand the specificity of recognition by Rlm4 and Rlm7, the AvrLm4-7 protein was produced in Pichia pastoris and its crystal structure was determined. It revealed the presence of four disulfide bridges, but no close structural analogs could be identified. A short stretch of amino acids in the C terminus of the protein, (R/N)(Y/F)(R/S)E(F/W), was well-conserved among AvrLm4-7 homologs. Loss of recognition of AvrLm4-7 by Rlm4 is caused by the mutation of a single glycine to an arginine residue located in a loop of the protein. Loss of recognition by Rlm7 is governed by more complex mutational patterns, including gene loss or drastic modifications of the protein structure. Three point mutations altered residues in the well-conserved C-terminal motif or close to the glycine involved in Rlm4-mediated recognition, resulting in the loss of Rlm7-mediated recognition. Transient expression in Nicotiana benthamiana (tobacco) and particle bombardment experiments on leaves from oilseed rape suggested that AvrLm4-7 interacts with its cognate R proteins inside the plant cell, and can be translocated into plant cells in the absence of the pathogen. Translocation of AvrLm4-7 into oilseed rape leaves is likely to require the (R/N)(Y/F)(R/S)E(F/W) motif as well as an RAWG motif located in a nearby loop that together form a positively charged region.
Assuntos
Ascomicetos/patogenicidade , Brassica napus/metabolismo , Brassica napus/microbiologia , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Virulência/genéticaRESUMO
High-mobility group (HMG) B proteins are eukaryotic DNA-binding proteins characterized by the HMG-box functional motif. These transcription factors play a pivotal role in global genomic functions and in the control of genes involved in specific developmental or metabolic pathways. The filamentous ascomycete Podospora anserina contains 12 HMG-box genes. Of these, four have been previously characterized; three are mating-type genes that control fertilization and development of the fruit-body, whereas the last one encodes a factor involved in mitochondrial DNA stability. Systematic deletion analysis of the eight remaining uncharacterized HMG-box genes indicated that none were essential for viability, but that seven were involved in the sexual cycle. Two HMG-box genes display striking features. PaHMG5, an ortholog of SpSte11 from Schizosaccharomyces pombe, is a pivotal activator of mating-type genes in P. anserina, whereas PaHMG9 is a repressor of several phenomena specific to the stationary phase, most notably hyphal anastomoses. Transcriptional analyses of HMG-box genes in HMG-box deletion strains indicated that PaHMG5 is at the hub of a network of several HMG-box factors that regulate mating-type genes and mating-type target genes. Genetic analyses revealed that this network also controls fertility genes that are not regulated by mating-type transcription factors. This study points to the critical role of HMG-box members in sexual reproduction in fungi, as 11 out of 12 members were involved in the sexual cycle in P. anserina. PaHMG5 and SpSte11 are conserved transcriptional regulators of mating-type genes, although P. anserina and S. pombe diverged 550 million years ago. Two HMG-box genes, SOX9 and its upstream regulator SRY, also play an important role in sex determination in mammals. The P. anserina and S. pombe mating-type genes and their upstream regulatory factor form a module of HMG-box genes analogous to the SRY/SOX9 module, revealing a commonality of sex regulation in animals and fungi.
Assuntos
Proteínas de Ligação a DNA/genética , Genes Fúngicos Tipo Acasalamento , Proteínas de Grupo de Alta Mobilidade/genética , Podospora/genética , Proteínas de Ligação a DNA/metabolismo , Fertilização/genética , Regulação Fúngica da Expressão Gênica , Domínios HMG-Box/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Família Multigênica , Podospora/fisiologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Schizosaccharomyces/genética , Deleção de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Salmonella infections are a leading cause of bacterial foodborne illness in the U.S.A. and the European Union Antimicrobial therapy is often administered to treat the infection, but increasingly isolates are being detected that demonstrate resistance to multiple antibiotics. Salmonella enterica contains two virulence-related T3SS (type III secretion systems): one promotes invasion of the intestine and the other one mediates systemic disease. Both of them secrete the SlrP protein acting as E3 ubiquitin ligase in human host cells where it targets Trx1 (thioredoxin-1). SlrP belongs to the NEL family of bacterial E3 ubiquitin ligases that have been observed in two distinct autoinhibitory conformations. We solved the 3D structure of the SlrP-Trx1 complex and determined the Trx1 ubiquitination site. The description of the substrate-binding mode sheds light on the first step of the activation mechanism of SlrP. Comparison with the available structural data of other NEL effectors allowed us to gain new insights into their autoinhibitory mechanism. We propose a molecular mechanism for the regulation of SlrP in which structural constraints sequestrating the NEL domain would be sequentially released. This work thus constitutes a new milestone in the understanding of how these T3SS effectors influence pathogen virulence. It also provides the fundamental basis for future development of new antimicrobials.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação/fisiologia , Cristalografia por Raios X , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Salmonella typhi , Tiorredoxinas/genética , Sistemas de Secreção Tipo IIIRESUMO
The mechanisms involved in the virulence of Yersinia pestis, the plague pathogen, are not fully understood. In previous research, we found that a Y. pestis mutant lacking the HicB3 (YPO3369) putative orphan antitoxin was attenuated for virulence in a murine model of bubonic plague. Toxin-antitoxin systems (TASs) are widespread in prokaryotes. Most bacterial species possess many TASs of several types. In type II TASs, the toxin protein is bound and neutralized by its cognate antitoxin protein in the cytoplasm. Here we identify the hicA3 gene encoding the toxin neutralized by HicB3 and show that HicA3-HicB3 constitutes a new functional type II TAS in Y. pestis. Using biochemical and mutagenesis-based approaches, we demonstrate that the HicA3 toxin is an RNase with a catalytic histidine residue. HicB3 has two functions: it sequesters and neutralizes HicA3 by blocking its active site, and it represses transcription of the hicA3B3 operon. Gel shift assays and reporter fusion experiments indicate that the HicB3 antitoxin binds to two operators in the hicA3B3 promoter region. We solved the X-ray structures of HicB3 and the HicA3-HicB3 complex; thus, we present the first crystal structure of a TA complex from the HicAB family. HicB3 forms a tetramer that can bind two HicA3 toxin molecules. HicA3 is monomeric and folds as a double-stranded-RNA-binding domain. The HicB3 N-terminal domain occludes the HicA3 active site, whereas its C-terminal domain folds as a ribbon-helix-helix DNA-binding motif.
Assuntos
Antitoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Yersinia pestis/metabolismo , Animais , Antitoxinas/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Composição de Bases , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Peste/microbiologia , Regiões Promotoras Genéticas , Conformação Proteica , Virulência , Yersinia pestis/genética , Yersinia pestis/patogenicidadeRESUMO
The Apicomplexan AP2 (ApiAP2) proteins are the best characterized family of DNA-binding proteins in the malaria parasite. Apart from the AP2 DNA-binding domain, there is little sequence similarity between ApiAP2 proteins and no other functional domains have been extensively characterized. One protein domain, which is present in a subset of the ApiAP2 proteins, is the conserved AP2-coincident domain mostly at the C-terminus (ACDC domain). Here we solved for the first time the crystal structure of the ACDC domain from two distinct Plasmodium falciparum ApiAP2 proteins and one orthologue from P. vivax , revealing a non-canonical four-helix bundle. Despite little sequence conservation between the ACDC domains from the two proteins, the structures are remarkably similar and do not resemble that of any other known protein domains. Due to their unique protein architecture and lack of homologues in the human genome, we performed in silico docking calculations against a library of known antimalarial compounds and we identified a small molecule that can potentially bind to any Apicomplexan ACDC domain within a pocket highly conserved amongst ApiAP2 proteins. Inhibitors based on this compound would disrupt the function of the ACDC domain and thus of the ApiAP2 proteins containing it, providing a new therapeutic window for targeting the malaria parasite and other Apicomplexans.
RESUMO
The nitrate- and nitrite-sensing NIT domain is present in diverse signal-transduction proteins across a wide range of bacterial species. NIT domain function was established through analysis of the Klebsiella oxytoca NasR protein, which controls expression of the nasF operon encoding enzymes for nitrite and nitrate assimilation. In the presence of nitrate or nitrite, the NasR protein inhibits transcription termination at the factor-independent terminator site in the nasF operon transcribed leader region. We present here the crystal structure of the intact NasR protein in the apo state. The dimeric all-helical protein contains a large amino-terminal NIT domain that associates two four-helix bundles, and a carboxyl-terminal ANTAR (AmiR and NasR transcription antitermination regulator) domain. The analysis reveals unexpectedly that the NIT domain is structurally similar to the periplasmic input domain of the NarX two-component sensor that regulates nitrate and nitrite respiration. This similarity suggests that the NIT domain binds nitrate and nitrite between two invariant arginyl residues located on adjacent alpha helices, and results from site-specific mutagenesis showed that these residues are critical for NasR function. The resulting structural movements in the NIT domain would provoke an active configuration of the ANTAR domains necessary for specific leader mRNA binding.
Assuntos
Proteínas de Bactérias/química , Nitratos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transativadores/química , Proteínas de Bactérias/genética , Sítios de Ligação , Modelos Moleculares , Mutação , Nitratos/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Transativadores/genéticaRESUMO
Methylation is a common modification encountered in DNA, RNA and proteins. It plays a central role in gene expression, protein function and mRNA translation. Prokaryotic and eukaryotic class I translation termination factors are methylated on the glutamine of the essential and universally conserved GGQ motif, in line with an important cellular role. In eukaryotes, this modification is performed by the Mtq2-Trm112 holoenzyme. Trm112 activates not only the Mtq2 catalytic subunit but also two other tRNA methyltransferases (Trm9 and Trm11). To understand the molecular mechanisms underlying methyltransferase activation by Trm112, we have determined the 3D structure of the Mtq2-Trm112 complex and mapped its active site. Using site-directed mutagenesis and in vivo functional experiments, we show that this structure can also serve as a model for the Trm9-Trm112 complex, supporting our hypothesis that Trm112 uses a common strategy to activate these three methyltransferases.
Assuntos
Proteínas Metiltransferases/química , Subunidades Proteicas/química , Domínio Catalítico , Cristalografia , Ativação Enzimática , Proteínas Fúngicas/química , Deleção de Genes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Biossíntese de Proteínas , Proteínas Metiltransferases/genética , Subunidades Proteicas/genética , S-Adenosilmetionina/química , Proteínas de Saccharomyces cerevisiae/genética , tRNA Metiltransferases/genéticaRESUMO
In Archaea and Eukaryotes, the synthesis of a universal tRNA modification, N6-threonyl-carbamoyl adenosine (t6A), is catalyzed by the KEOPS complex composed of Kae1, Bud32, Cgi121, and Pcc1. A fifth subunit, Gon7, is found only in Fungi and Metazoa. Here, we identify and characterize a fifth KEOPS subunit in Archaea. This protein, dubbed Pcc2, is a paralog of Pcc1 and is widely conserved in Archaea. Pcc1 and Pcc2 form a heterodimer in solution, and show modest sequence conservation but very high structural similarity. The five-subunit archaeal KEOPS does not form dimers but retains robust tRNA binding and t6A synthetic activity. Pcc2 can substitute for Pcc1 but the resulting KEOPS complex is inactive, suggesting a distinct function for the two paralogs. Comparative sequence and structure analyses point to a possible evolutionary link between archaeal Pcc2 and eukaryotic Gon7. Our work indicates that Pcc2 regulates the oligomeric state of the KEOPS complex, a feature that seems to be conserved from Archaea to Eukaryotes.