Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125607

RESUMO

The future of therapy for neurodegenerative diseases (NDs) relies on new strategies targeting multiple pharmacological pathways. Our research led to obtaining the compound AR71 [(E)-3-(3,4,5-trimethoxyphenyl)-1-(4-(3-(piperidin-1-yl)propoxy)phenyl)prop-2-en-1-one], which has high affinity for human H3R (Ki = 24 nM) and selectivity towards histamine H1 and H4 receptors (Ki > 2500 nM), and showed anti-inflammatory activity in a model of lipopolysaccharide-induced inflammation in BV-2 cells. The presented tests confirmed its antagonist/inverse agonist activity profile and good metabolic stability while docking studies showed the binding mode to histamine H1, H3, and H4 receptors. In in vitro tests, cytotoxicity was evaluated at three cell lines (neuroblastoma, astrocytes, and human peripheral blood mononuclear cells), and a neuroprotective effect was observed in rotenone-induced toxicity. In vivo experiments in a mouse neuropathic pain model demonstrated the highest analgesic effects of AR71 at the dose of 20 mg/kg body weight. Additionally, AR71 showed antiproliferative activity in higher concentrations. These findings suggest the need for further evaluation of AR71's therapeutic potential in treating ND and CNS cancer using animal experimental models.


Assuntos
Analgésicos , Anti-Inflamatórios , Receptores Histamínicos H3 , Animais , Humanos , Camundongos , Receptores Histamínicos H3/metabolismo , Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Masculino , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Neuralgia/induzido quimicamente , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Lipopolissacarídeos , Linhagem Celular Tumoral
2.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542895

RESUMO

The resolution of inflammation is the primary domain of specialised pro-resolving mediators (SPMs), which include resolvins, protectins, and their forms synthesised under the influence of aspirin and the maresins. The role of these SPMs has been discussed by many authors in the literature, with particular reference to neuroinflammation and significant neurological disorders. This review discusses the role of G protein-coupled receptor 18 (GPR18), resolvin D2 (RvD2) activity, and the GPR18-RvD2 signalling axis, as well as the role of small molecule ligands of GPR18 in inflammation in various health disorders (brain injuries, neuropathic pain, neurodegenerative/cardiometabolic/cardiovascular/gastrointestinal diseases, peritonitis, periodontitis, asthma and lung inflammation, Duchenne muscular dystrophy, SARS-CoV-2-induced inflammation, and placenta disorders. The idea of biological intervention through modulating GPR18 signalling is attracting growing attention because of its great therapeutic potential. With this paper, we aimed to present a comprehensive review of the most recent literature, perform a constructive view of data, and point out research gaps.


Assuntos
Ácidos Docosa-Hexaenoicos , Inflamação , Gravidez , Feminino , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/tratamento farmacológico , Transdução de Sinais , SARS-CoV-2 , Mediadores da Inflamação , Receptores Acoplados a Proteínas G
3.
Inflamm Res ; 72(2): 181-194, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36370200

RESUMO

OBJECTIVE: Microglia play an important role in the neuroinflammation developed in response to various pathologies. In this study, we examined the anti-inflammatory effect of the new human histamine H3 receptor (H3R) ligands with flavonoid structure in murine microglial BV-2 cells. MATERIAL AND METHODS: The affinity of flavonoids (E243 -flavone and IIIa-IIIc-chalcones) for human H3R was evaluated in the radioligand binding assay. The cytotoxicity on BV-2 cell viability was investigated with the MTS assay. Preliminary evaluation of anti-inflammatory properties was screened by the Griess assay in an in vitro neuroinflammation model of LPS-treated BV-2 cells. The expression and secretion of pro-inflammatory cytokines were evaluated by real-time qPCR and ELISA, respectively. The expression of microglial cell markers were determined by immunocytochemistry. RESULTS: Chalcone derivatives showed high affinity at human H3R with Ki values < 25 nM. At the highest nontoxic concentration (6.25 µM) compound IIIc was the most active in reducing the level of nitrite in Griess assay. Additionally, IIIc treatment attenuated inflammatory process in murine microglia cells by down-regulating pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) at both the level of mRNA and protein level. Our immunocytochemistry studies revealed expression of microglial markers (Iba1, CD68, CD206) in BV-2 cell line. CONCLUSIONS: These results emphasize the importance of further research to accurately identify the anti-inflammatory mechanism of action of chalcones.


Assuntos
Chalconas , Histamina , Camundongos , Humanos , Animais , Histamina/metabolismo , Doenças Neuroinflamatórias , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Chalconas/metabolismo , Chalconas/farmacologia , Chalconas/uso terapêutico , Microglia/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Receptores Histamínicos/metabolismo , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo
4.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628900

RESUMO

The role of histamine H3 receptors (H3Rs) in memory and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer's disease (AD), is well-accepted. Therefore, the procognitive effects of acute systemic administration of H3R antagonist E169 (2.5-10 mg/kg, i.p.) on MK801-induced amnesia in C57BL/6J mice using the novel object recognition test (NORT) were evaluated. E169 (5 mg) provided a significant memory-improving effect on MK801-induced short- and long-term memory impairments in NORT. The E169 (5 mg)-provided effects were comparable to those observed with the reference phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and were abrogated with the H3R agonist (R)-α-methylhistamine (RAMH). Additionally, our results demonstrate that E169 ameliorated MK801-induced memory deficits by antagonism of H3Rs and by modulation of the level of disturbance in the expression of PI3K, Akt, and GSK-3ß proteins, signifying that E169 mitigated the Akt-mTOR signaling pathway in the hippocampus of tested mice. Moreover, the results observed revealed that E169 (2.5-10 mg/kg, i.p.) did not alter anxiety levels and locomotor activity of animals in open field tests, demonstrating that performances improved following acute systemic administration with E169 in NORT are unrelated to changes in emotional response or in spontaneous locomotor activity. In summary, these obtained results suggest the potential of H3R antagonists such as E169, with good in silico physicochemical properties and stable retained key interactions in docking studies at H3R, in simultaneously modulating disturbed brain neurotransmitters and the imbalanced Akt-mTOR signaling pathway related to neurodegenerative disorders, e.g., AD.


Assuntos
Doença de Alzheimer , Antagonistas dos Receptores Histamínicos H3 , Animais , Camundongos , Camundongos Endogâmicos C57BL , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases , Maleato de Dizocilpina , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinase , Serina-Treonina Quinases TOR , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Transdução de Sinais , Cognição
5.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762006

RESUMO

Chronic inflammation plays an important role in the development of neurodegenerative diseases, such as Parkinson's disease (PD). In the present study, we synthesized 25 novel xanthine derivatives with variable substituents at the N1-, N3- and C8-position as adenosine receptor antagonists with potential anti-inflammatory activity. The compounds were investigated in radioligand binding studies at all four human adenosine receptor subtypes, A1, A2A, A2B and A3. Compounds showing nanomolar A2A and dual A1/A2A affinities were obtained. Three compounds, 19, 22 and 24, were selected for further studies. Docking and molecular dynamics simulation studies indicated binding poses and interactions within the orthosteric site of adenosine A1 and A2A receptors. In vitro studies confirmed the high metabolic stability of the compounds, and the absence of toxicity at concentrations of up to 12.5 µM in various cell lines (SH-SY5Y, HepG2 and BV2). Compounds 19 and 22 showed anti-inflammatory activity in vitro. In vivo studies in mice investigating carrageenan- and formalin-induced inflammation identified compound 24 as the most potent anti-inflammatory derivative. Future studies are warranted to further optimize the compounds and to explore their therapeutic potential in neurodegenerative diseases.


Assuntos
Neuroblastoma , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Inflamação , Adenosina , Carragenina
6.
Molecules ; 28(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36770774

RESUMO

Since the number of people with Alzheimer's disease (AD) continues to rise, new and effective drugs are urgently needed to not only slow down the progression of the disease, but to stop or even prevent its development. Serotonin 5-HT6 receptor (5-HT6R) ligands are still a promising therapeutic target for the treatment of AD. 1,3,5-Triazine derivatives, as novel structures lacking an indole or a sulfone moiety, have proven to be potent ligands for this receptor. In present work, new derivatives of the compound MST4 (4-((2-isopropyl-5-methylphenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine), the potent 5-HT6R antagonist (Ki = 11 nM) with promising ADMET and in vivo properties, were designed. The synthesized compounds were tested for their affinity towards 5-HT6R and other receptor (off)targets (serotonin 5-HT2A, 5-HT7 and dopamine D2). Based on the new results, 4-(2-tert-butylphenoxy)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (3) was selected for extended in vitro studies as a potent and selective 5-HT6R ligand (Ki = 13 nM). Its ability to permeate the blood-brain barrier (BBB) and its hepatotoxicity were evaluated. In addition, X-ray crystallography and solubility studies were also performed. The results obtained confirm that 6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine derivatives, especially compound 3, are promising structures for further pharmacological studies as 5-HT6R ligands.


Assuntos
Doença de Alzheimer , Serotonina , Humanos , Relação Estrutura-Atividade , Receptores de Serotonina/química , Doença de Alzheimer/tratamento farmacológico , Ligantes , Triazinas/química
7.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903593

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder, for which there is no effective cure. Current drugs only slow down the course of the disease, and, therefore, there is an urgent need to find effective therapies that not only treat, but also prevent it. Acetylcholinesterase inhibitors (AChEIs), among others, have been used for years to treat AD. Histamine H3 receptors (H3Rs) antagonists/inverse agonists are indicated for CNS diseases. Combining AChEIs with H3R antagonism in one structure could bring a beneficial therapeutic effect. The aim of this study was to find new multitargetting ligands. Thus, continuing our previous research, acetyl- and propionyl-phenoxy-pentyl(-hexyl) derivatives were designed. These compounds were tested for their affinity to human H3Rs, as well as their ability to inhibit cholinesterases (acetyl- and butyrylcholinesterases) and, additionally, human monoamine oxidase B (MAO B). Furthermore, for the selected active compounds, their toxicity towards HepG2 or SH-SY5Y cells was evaluated. The results showed that compounds 16 (1-(4-((5-(azepan-1-yl)pentyl)oxy)phenyl)propan-1-one) and 17 (1-(4-((6-(azepan-1-yl)hexyl)oxy)phenyl)propan-1-one) are the most promising, with a high affinity for human H3Rs (Ki: 30 nM and 42 nM, respectively), a good ability to inhibit cholinesterases (16: AChE IC50 = 3.60 µM, BuChE IC50 = 0.55 µM; 17: AChE IC50 = 1.06 µM, BuChE IC50 = 2.86 µM), and lack of cell toxicity up to 50 µM.


Assuntos
Doença de Alzheimer , Neuroblastoma , Receptores Histamínicos H3 , Humanos , Histamina , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Agonismo Inverso de Drogas , Receptores Histamínicos H3/química , Inibidores da Colinesterase/química , Receptores Histamínicos , Monoaminoxidase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Ligantes
8.
Molecules ; 28(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241939

RESUMO

Pain is a very unpleasant experience that makes life extremely uncomfortable. The histamine H4 receptor (H4R) is a promising target for the treatment of inflammatory and immune diseases, as well as pain. H4R ligands have demonstrated analgesic effects in a variety of pain models, including inflammatory pain. Continuing the search for active H4R ligands among the alkyl derivatives of 1,3,5-triazine, we obtained 19 new compounds in two series: acyclic (I) and aliphatic (II). In vitro pharmacological evaluation showed their variable affinity for H4R. The majority of compounds showed a moderate affinity for this receptor (Ki > 100 nM), while all compounds tested in ß-arrestin and cAMP assays showed antagonistic activity. The most promising, compound 6, (4-(cyclopentylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine; Ki = 63 nM) was selected for further in vitro evaluation: blood-brain barrier permeability (PAMPA assay; Pe = 12.26 × 10-6 cm/s) and toxicity tests (HepG2 and SH-5YSY cells; no toxicity up to 50 µM). Next, compound 6 tested in vivo in a carrageenan-induced inflammatory pain model showed anti-inflammatory and analgesic effects (strongest at 50 mg/kg i.p.). Furthermore, in a histamine- and chloroquine-induced pruritus model, compound 6 at a dose of 25 mg/kg i.p. and 50 mg/kg i.p., respectively, reduced the number of scratch bouts. Thus, compound 6 is a promising ligand for further studies.


Assuntos
Histamina , Triazinas , Humanos , Receptores Histamínicos H4 , Triazinas/farmacologia , Triazinas/uso terapêutico , Receptores Histamínicos , Dor/tratamento farmacológico , Ligantes , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Receptores Acoplados a Proteínas G
9.
Molecules ; 28(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36615435

RESUMO

The multitarget-directed ligands demonstrating affinity to histamine H3 receptor and additional cholinesterase inhibitory potency represent a promising strategy for research into the effective treatment of Alzheimer's disease. In this study, a novel series of benzophenone derivatives was designed and synthesized. Among these derivatives, we identified compound 6 with a high affinity for H3R (Ki = 8 nM) and significant inhibitory activity toward BuChE (IC50 = 172 nM and 1.16 µM for eqBuChE and hBuChE, respectively). Further in vitro studies revealed that compound 6 (4-fluorophenyl) (4-((5-(piperidin-1-yl)pentyl)oxy)phenyl)methanone) displays moderate metabolic stability in mouse liver microsomes, good permeability with a permeability coefficient value (Pe) of 6.3 × 10-6 cm/s, and its safety was confirmed in terms of hepatotoxicity in the HepG2 cell line. Therefore, we investigated the in vivo activity of compound 6 in the Passive Avoidance Test and the Formalin Test. While compound 6 did not show a statistically significant influence on memory and learning, it showed analgesic properties in both acute (ED50 = 20.9 mg/kg) and inflammatory (ED50 = 17.5 mg/kg) pain.


Assuntos
Doença de Alzheimer , Receptores Histamínicos H3 , Camundongos , Animais , Colinesterases/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Histamina , Receptores Histamínicos H3/metabolismo , Inibidores da Colinesterase/farmacologia , Receptores Histamínicos , Ligantes , Relação Estrutura-Atividade
10.
Bioorg Chem ; 114: 105129, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34217977

RESUMO

Alzheimer's disease (AD) is a complex and incurable illness that requires the urgent approval of new effective drugs. However, since 2003, no new molecules have shown successful results in clinical trials, thereby making the common "one compound - one target" paradigm questionable. Recently, the multitarget-directed ligand (MTDL) approach has gained popularity, as compounds targeting at least two biological targets may be potentially more effective in treating AD. On the basis of these findings, we designed, synthesized, and evaluated through biological assays a series of derivatives of alicyclic amines linked by an alkoxy bridge to an aromatic lipophilic moiety of [1,1'-biphenyl]-4-carbonitrile. The research results revealed promising biological activity of the obtained compounds toward the chosen targets involved in AD pathophysiology; the compounds showed high affinity (mostly low nanomolar range of Ki values) for human histamine H3 receptors (hH3R) and good nonselective inhibitory potency (micromolar range of IC50 values) against acetylcholinesterase from electric eel (eeAChE) and equine serum butyrylcholinesterase (eqBuChE). Moreover, micromolar/submicromolar potency against human monoamine oxidase B (hMAO B) was detected for some compounds. The study identified compound 5 as a multiple hH3R/eeAChE/eqBuChE/hMAO B ligand (5: hH3R Ki = 9.2 nM; eeAChE IC50 = 2.63 µM; eqBuChE IC50 = 1.30 µM; hMAO B IC50 = 0.60 µM). Further in vitro studies revealed that compound 5 exhibits a mixed type of eeAChE and eqBuChE inhibition, good metabolic stability, and moderate hepatotoxicity effect on HepG2 cells. Finally, compound 5 showed a beneficial effect on scopolamine-induced memory impairments, as assessed by the passive avoidance test, thus revealing the potential of this compound as a promising agent for further optimization for AD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Compostos de Bifenilo/farmacologia , Inibidores da Colinesterase/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Receptores Histamínicos H3/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Animais , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Cavalos , Humanos , Ligantes , Estrutura Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade
11.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208297

RESUMO

Neurodegenerative diseases, e.g., Alzheimer's disease (AD), are a key health problem in the aging population. The lack of effective therapy and diagnostics does not help to improve this situation. It is thought that ligands influencing multiple but interconnected targets can contribute to a desired pharmacological effect in these complex illnesses. Histamine H3 receptors (H3Rs) play an important role in the brain, influencing the release of important neurotransmitters, such as acetylcholine. Compounds blocking their activity can increase the level of these neurotransmitters. Cholinesterases (acetyl- and butyrylcholinesterase) are responsible for the hydrolysis of acetylcholine and inactivation of the neurotransmitter. Increased activity of these enzymes, especially butyrylcholinesterase (BuChE), is observed in neurodegenerative diseases. Currently, cholinesterase inhibitors: donepezil, rivastigmine and galantamine are used in the symptomatic treatment of AD. Thus, compounds simultaneously blocking H3R and inhibiting cholinesterases could be a promising treatment for AD. Herein, we describe the BuChE inhibitory activity of H3R ligands. Most of these compounds show high affinity for human H3R (Ki < 150 nM) and submicromolar inhibition of BuChE (IC50 < 1 µM). Among all the tested compounds, 19 (E153, 1-(5-([1,1'-biphenyl]-4-yloxy)pentyl)azepane) exhibited the most promising in vitro affinity for human H3R, with a Ki value of 33.9 nM, and for equine serum BuChE, with an IC50 of 590 nM. Moreover, 19 (E153) showed inhibitory activity towards human MAO B with an IC50 of 243 nM. Furthermore, in vivo studies using the Passive Avoidance Task showed that compound 19 (E153) effectively alleviated memory deficits caused by scopolamine. Taken together, these findings suggest that compound 19 can be a lead structure for developing new anti-AD agents.


Assuntos
Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Aminas/química , Butirilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Monoaminoxidase/química , Receptores Histamínicos H3/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Butirilcolinesterase/metabolismo , Linhagem Celular , Inibidores da Colinesterase/síntese química , Humanos , Ligantes , Masculino , Camundongos , Modelos Animais , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoaminoxidase/metabolismo , Receptores Histamínicos H3/química , Relação Estrutura-Atividade
12.
Bioorg Med Chem Lett ; 30(11): 127147, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32249114

RESUMO

The paper presents in silico study to explain differences in the influence of the series of non-imidazole histamine receptor H3 ligands on the activity of cytochrome P-450 3A4 isoform, which was verified in in vitro tests. The compounds appeared to induce broad range of effects - from significant inhibition (-61% reduction of CYP3A4 control activity) to extreme activation (+713% of control activity). Structure-activity relationship for examined compounds was analyzed, with special attention paid to the influence of substituent and the chain length. Docking, molecular dynamics studies, and their statistical analysis allowed to identify those interactions that can be responsible for determination of particular activity type of a compound toward CYP3A4 (activation/inhibition). It resulted in indication of several amino acid residues, which should be carefully analyzed during estimation of compound effects on CYP3A4 activity.


Assuntos
Citocromo P-450 CYP3A/química , Antagonistas dos Receptores Histamínicos H3/química , Sítios de Ligação , Citocromo P-450 CYP3A/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Receptores Histamínicos H3/química , Receptores Histamínicos H3/metabolismo , Relação Estrutura-Atividade
13.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503208

RESUMO

The histamine H3 receptor (H3R) functions as auto- and hetero-receptors, regulating the release of brain histamine (HA) and acetylcholine (ACh), respectively. The enzyme acetylcholine esterase (AChE) is involved in the metabolism of brain ACh. Both brain HA and ACh are implicated in several cognitive disorders like Alzheimer's disease, schizophrenia, anxiety, and narcolepsy, all of which are comorbid with autistic spectrum disorder (ASD). Therefore, the novel dual-active ligand E100 with high H3R antagonist affinity (hH3R: Ki = 203 nM) and balanced AChE inhibitory effect (EeAChE: IC50 = 2 µM and EqBuChE: IC50 = 2 µM) was investigated on autistic-like sociability, repetitive/compulsive behaviour, anxiety, and oxidative stress in male C57BL/6 mice model of ASD induced by prenatal exposure to valproic acid (VPA, 500 mg/kg, intraperitoneal (i.p.)). Subchronic systemic administration with E100 (5, 10, and 15 mg/kg, i.p.) significantly and dose-dependently attenuated sociability deficits of autistic (VPA) mice in three-chamber behaviour (TCB) test (all p < 0.05). Moreover, E100 significantly improved repetitive and compulsive behaviors by reducing the increased percentage of marbles buried in marble-burying behaviour (MBB) (all p < 0.05). Furthermore, pre-treatment with E100 (10 and 15 mg/kg, i.p.) corrected decreased anxiety levels (p < 0.05), however, failed to restore hyperactivity observed in elevated plus maze (EPM) test. In addition, E100 (10 mg/kg, i.p.) mitigated oxidative stress status by increasing the levels of decreased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and decreasing the elevated levels of malondialdehyde (MDA) in the cerebellar tissues (all p < 0.05). Additionally, E100 (10 mg/kg, i.p.) significantly reduced the elevated levels of AChE activity in VPA mice (p < 0.05). These results demonstrate the promising effects of E100 on in-vivo VPA-induced ASD-like features in mice, and provide evidence that a potent dual-active H3R antagonist and AChE inhibitor (AChEI) is a potential drug candidate for future therapeutic management of autistic-like behaviours.


Assuntos
Transtorno Autístico/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Receptores Histamínicos H3/metabolismo , Animais , Antioxidantes/metabolismo , Transtorno Autístico/induzido quimicamente , Comportamento Animal , Cerebelo/metabolismo , Feminino , Glutationa/metabolismo , Cinética , Peroxidação de Lipídeos , Masculino , Exposição Materna , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Movimento , Gravidez , Prenhez , Ácido Valproico
14.
Int J Mol Sci ; 21(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408504

RESUMO

Dual target ligands are a promising concept for the treatment of Parkinson's disease (PD). A combination of monoamine oxidase B (MAO B) inhibition with histamine H3 receptor (H3R) antagonism could have positive effects on dopamine regulation. Thus, a series of twenty-seven 4-tert-butylphenoxyalkoxyamines were designed as potential dual-target ligands for PD based on the structure of 1-(3-(4-tert-butylphenoxy)propyl)piperidine (DL76). Probed modifications included the introduction of different cyclic amines and elongation of the alkyl chain. Synthesized compounds were investigated for human H3R (hH3R) affinity and human MAO B (hMAO B) inhibitory activity. Most compounds showed good hH3R affinities with Ki values below 400 nM, and some of them showed potent inhibitory activity for hMAO B with IC50 values below 50 nM. However, the most balanced activity against both biological targets showed DL76 (hH3R: Ki = 38 nM and hMAO B: IC50 = 48 nM). Thus, DL76 was chosen for further studies, revealing the nontoxic nature of DL76 in HEK293 and neuroblastoma SH-SY5Ycells. However, no neuroprotective effect was observed for DL76 in hydrogen peroxide-treated neuroblastoma SH-SY5Y cells. Furthermore, in vivo studies showed antiparkinsonian activity of DL76 in haloperidol-induced catalepsy (Cross Leg Position Test) at a dose of 50 mg/kg body weight.


Assuntos
Aminas/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Aminas/química , Animais , Catalepsia/induzido quimicamente , Catalepsia/fisiopatologia , Catalepsia/prevenção & controle , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Haloperidol , Antagonistas dos Receptores Histamínicos H3/química , Humanos , Cinética , Ligantes , Masculino , Estrutura Molecular , Inibidores da Monoaminoxidase/química , Doença de Parkinson/fisiopatologia , Doença de Parkinson/prevenção & controle , Ratos Wistar , Relação Estrutura-Atividade
15.
Molecules ; 25(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235506

RESUMO

Histamine H3 receptors (H3Rs) are involved in several neuropsychiatric diseases including epilepsy. Therefore, the effects of H3R antagonist E177 (5 and 10 mg/kg, intraperitoneal (i.p.)) were evaluated on the course of kindling development, kindling-induced memory deficit, oxidative stress levels (glutathione (GSH), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD)), various brain neurotransmitters (histamine (HA), acetylcholine (ACh), γ-aminobutyric acid (GABA)), and glutamate (GLU), acetylcholine esterase (AChE) activity, and c-Fos protein expression in pentylenetetrazole (PTZ, 40 mg/kg) kindled rats. E177 (5 and 10 mg/kg, i.p.) significantly decreased seizure score, increased step-through latency (STL) time in inhibitory avoidance paradigm, and decreased transfer latency time (TLT) in elevated plus maze (all P < 0.05). Moreover, E177 mitigated oxidative stress by significantly increasing GSH, CAT, and SOD, and decreasing the abnormal level of MDA (all P < 0.05). Furthermore, E177 attenuated elevated levels of hippocampal AChE, GLU, and c-Fos protein expression, whereas the decreased hippocampal levels of HA and ACh were modulated in PTZ-kindled animals (all P < 0.05). The findings suggest the potential of H3R antagonist E177 as adjuvant to antiepileptic drugs with an added advantage of preventing cognitive impairment, highlighting the H3Rs as a potential target for the therapeutic management of epilepsy with accompanied memory deficits.


Assuntos
Epilepsia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo , Antagonistas dos Receptores Histamínicos H3/farmacologia , Excitação Neurológica/efeitos dos fármacos , Transtornos da Memória , Neurotransmissores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pentilenotetrazol/toxicidade , Proteínas Proto-Oncogênicas c-fos/biossíntese , Animais , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Epilepsia/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Ratos , Ratos Wistar
16.
Bioorg Med Chem ; 27(7): 1254-1262, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30792106

RESUMO

This study focuses on the design, synthesis, molecular modeling and biological evaluation of a novel group of alkyl-1,3,5-triazinyl-methylpiperazines. New compounds were synthesized and their affinities for human histamine H4 receptor (hH4R) were evaluated. Among them, 4-(cyclohexylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (14) exhibited hH4R affinity with a Ki of 160 nM and behaved as antagonist in functional assays: the cellular aequorin-based assay (IC50 = 32 nM) and [35S]GTPγS binding assay (pKb = 6.67). In addition, antinociceptive activity of 14in vivo was observed in Formalin test (in mice) and in Carrageenan-induced acute inflammation test (in rats).


Assuntos
Analgésicos/farmacologia , Inflamação/tratamento farmacológico , Receptores Histamínicos H4/antagonistas & inibidores , Triazinas/farmacologia , Analgésicos/síntese química , Analgésicos/química , Animais , Carragenina , Relação Dose-Resposta a Droga , Formaldeído , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Ligantes , Camundongos , Estrutura Molecular , Ratos , Receptores Histamínicos H4/metabolismo , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/química
17.
Bioorg Chem ; 84: 319-325, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30530073

RESUMO

A series of 2-amino-4-(4-methylpiperazin-1-yl)-1,3,5-triazines was designed based on previously published 2-amino-4-benzyl-(4-methylpiperazin-1-yl)-1,3,5-triazines in order to evaluate the role of a linker between the triazine moiety and an aromatic substituent for the human serotonin 5-HT6 receptor affinity. As new linkers two carbon atoms (ethyl or ethenyl) or an oxyalkyl chain (methoxy, 2-ethoxy, 2-propoxy) were introduced. Affinities of the compounds for the 5-HT6R as the main target, and for the 5-HT1AR, 5-HT7R and D2R as competitive ones, were determined in the radioligand binding assays. Docking to the 5-HT6R homology model was performed to support SAR analysis. Results showed that the branching of the methoxyl linker increased affinity for the human 5-HT6R whereas an unsaturated bond within the linker dramatically reduced desirable activity. Both experimental and theoretical studies confirmed the previously postulated beneficial role of the aromatic size for interaction with the 5-HT6R. Thus, the largest naphthyl moiety yielded the highest activity. In particular, 4-(4-methylpiperazin-1-yl)-6-(1-(naphthalen-1-yloxy)ethyl)-1,3,5-triazin-2-amine (24), the most potent 5-HT6R agent found (Ki = 23 nM), can be a new lead structure for further search and development.


Assuntos
Piperazinas/química , Receptores de Serotonina/química , Antagonistas da Serotonina/síntese química , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Piperazinas/síntese química , Piperazinas/metabolismo , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/química , Antagonistas da Serotonina/metabolismo , Relação Estrutura-Atividade
18.
Int J Mol Sci ; 20(4)2019 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-30813468

RESUMO

Intraocular pressure (IOP) has a tendency to fluctuate throughout the day, reaching its peak in the early morning in healthy subjects or glaucoma patients. Likewise, histamine tone also fluctuates over time, being lower at nighttime. Numerous studies have demonstrated a correlation between short-term IOP fluctuation and glaucoma progression; however, it has not yet been determined whether histamine plays a role in IOP fluctuations. The aim of this research was to establish the distribution of the histamine receptor proteins and respective mRNAs in the eye by western blot, immunohistochemistry and RT-PCR in New Zealand rabbits. Furthermore, we used a transient ocular hypertension (OHT) model induced by injection of 50 µL of 5% hypertonic saline into the vitreous and a stable OHT model (100 µL 0.1% carbomer in the anterior chamber) to address the potential IOP-lowering ability of H3 receptor (H3R) antagonists (ciproxifan, DL76 and GSK189254). IOPs were performed with a Tono-Pen at baseline and 60, 120 and 240 min post treatment after transient OHT induction and, every day for 12 days in the stable OHT model. All histamine receptor subtypes were localized in the rabbit retina and ciliary body/trabecular meshwork. All the treatments lowered IOP in a dose-dependent fashion between 0.3% and 1%. More specifically, the effects were maximal with ciproxifan at 60 min post-dose (IOP60 change = -18.84 ± 4.85 mmHg, at 1%), remained stable until 120 min (IOP120 change = -16.38 ± 3.8 mmHg, at 1%) and decayed thereafter to reach baseline values at 240 min. These effects were highly specific and dependent on histamine release as pre-treatment with imetit (H3R agonist, 1%) or pyrilamine (H1R antagonist, 1%) largely blocked ciproxifan-mediated effects. Color Doppler ultrasound examination was performed to evaluate changes in ophtalmic artery resistivity index (RI) before and after repeated dosing with DL 76, GSK189254, ciproxifan and timolol. Chronic treatments with H3R antagonists and timolol improved the vascular performance of ophthalmic arteries and reduced retinal ganglion cell death. Oxidative stress was also reduced and measured 8-Hydroxy-2'-deoxyguanosine (8OHdG) expression, and by dihidroethydium (DHE) staining. These results demonstrated that the histamine system participates in IOP regulation and that H3R antagonists could represent a future promising therapy for glaucoma. Further studies should be focused on the long-term IOP circadian fluctuations.


Assuntos
Glaucoma/tratamento farmacológico , Glaucoma/fisiopatologia , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Pressão Intraocular , Hipertensão Ocular/tratamento farmacológico , Hipertensão Ocular/fisiopatologia , Animais , Corioide/efeitos dos fármacos , Corioide/metabolismo , Corioide/patologia , Modelos Animais de Doenças , Glaucoma/genética , Antagonistas dos Receptores Histamínicos H3/farmacologia , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Pressão Intraocular/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Modelos Biológicos , Hipertensão Ocular/genética , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos , Receptores Histamínicos H3/genética , Receptores Histamínicos H3/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Fatores de Tempo
19.
Molecules ; 24(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739417

RESUMO

Epilepsy is a multifaceted neurological disorder which severely affects neuronal function. Some patients may experience status epilepticus (SE), a life-threatening state of ongoing seizure activity linked to cognitive dysfunction, necessitating an immediate intervention. The potential of histamine H3 receptors in several neuropsychiatric diseases including epilepsy is well recognized. In the current study, we aimed to explore the effect of H3R antagonist E177 on prevention and termination of pilocarpine (PLC)-induced SE in rats as well as evaluating the effects of E177 on the levels of oxidative stress in hippocampus tissues. The results showed that the survival rate of animals pretreated with E177 (5 and 10 mg/kg, intraperitoneal (i.p.)) was significantly increased during the first hour of observation, and animals were protected from SE incidence and showed a prolonged average of latency to the first seizure when compared with animals pretreated with PLC (400 mg/kg, i.p.). Moreover, the protective effect of E177 (10 mg/kg) on SE was partially reversed when rats were co- administered with H3R agonist R-(α)-methylhistamine (RAM) and with the H2R antagonist zolantidine (ZOL), but not with the H1R antagonist pyrilamine (PYR). Furthermore, pretreatment with E177 (5 and 10 mg/kg) significantly decreased the abnormal levels of malondialdehyde (MDA), and increased levels of glutathione (GSH) in the hippocampal tissues of the treated rats. However, E177 failed to modulate the levels of catalase (CAT), superoxide dismutase (SOD), or acetylcholine esterase activity (AChE). Our findings suggest that the newly developed H3R antagonist E177 provides neuroprotection in a preclinical PLC-induced SE in rats, highlighting the histaminergic system as a potential therapeutic target for the therapeutic management of SE.


Assuntos
Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Pilocarpina/toxicidade , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Animais , Catalase/metabolismo , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Estado Epiléptico/metabolismo , Superóxido Dismutase/metabolismo
20.
Molecules ; 24(24)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817628

RESUMO

Though the 5-HT6 serotonin receptor is an important target giving both agonists and antagonists similar therapeutic potency in the treatment of topic CNS-diseases, no 5-HT6R ligand has reached the pharmaceutical market yet due to the too narrow chemical space of the known 5-HT6R agents and insufficient "drugability." Recently, a new group of non-indole and non-sulfone hydantoin-triazine 5-HT6R ligands was found, where 3-((4-amino-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-yl)methyl)-5-methyl-5-(naphthalen-2-yl)imidazolidine-2,4-dione (KMP-10) was the most active member. This study is focused on wider pharmacological and "druglikeness" characteristics for KMP-10. A computer-aided insight into molecular interactions with 5-HT6R has been performed. "Druglikeness" was examined using an eight-test panel in vitro, i.e., a parallel artificial membrane permeability assay (PAMPA), and Caco-2 permeability-, P-glycoprotein (Pgp) affinity-, plasma protein binding-, metabolic stability- and drug-drug interaction-assays, as well as mutagenicity- and HepG2-hepatotoxicity risk tests. Behavioral studies in vivo, i.e., elevated plus-maze (EPM) and novel object recognition (NOR) tests, were performed. Extended studies on the influence of KMP-10 on rats' metabolism, including biochemical tests, were conducted in vivo. Results indicated significant anxiolytic and precognitive properties, as well as some anti-obesity properties in vivo, and it was found to satisfy the "druglikeness" profile in vitro for KMP-10. The compound seems to be a good lead-structure and candidate for wider pharmacological studies in search for new CNS-drugs acting via 5-HT6R.


Assuntos
Antagonistas da Serotonina/química , Triazinas/química , Animais , Fármacos Antiobesidade , Células CACO-2 , Humanos , Hidantoínas/química , Masculino , Estrutura Molecular , Ligação Proteica , Ratos Wistar , Receptores de Serotonina , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA