Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(20): e202301509, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36811948

RESUMO

A T-shaped Pt0 complex with a diphosphine-borane (DPB) ligand was prepared. The Pt→B interaction enhances the electrophilicity of the metal and triggers the addition of Lewis bases to give the corresponding tetracoordinate complexes. For the first time, anionic Pt0 complexes are isolated and structurally authenticated. X-ray diffraction analyses show the anionic complexes [(DPB)PtX]- (X=CN, Cl, Br, I) to be square-planar. The d10 configuration and Pt0 oxidation state of the metal were unambiguously established by X-ray photoelectron spectroscopy and DFT calculations. The coordination of Lewis acids as Z-type ligands is a powerful mean to stabilize elusive electron-rich metal complexes and achieve uncommon geometry.

2.
Angew Chem Int Ed Engl ; 61(1): e202110102, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719849

RESUMO

Spectacular progress has recently been achieved in transition metal-catalyzed C-H borylation of phosphines as well as directed electrophilic C-H borylation. As shown here, P-directed electrophilic borylation provides a new, straightforward, and efficient access to phosphine-boranes. It operates under metal-free conditions and leverages simple, readily available substrates. It is applicable to a broad range of backbones (naphthyl, biphenyl, N-phenylpyrrole, binaphthyl, benzyl, naphthylmethyl) and gives facile access to various substitution patterns at boron (by varying the boron electrophile or post-derivatizing the borane moiety). NMR monitoring supports the involvement of P-stabilized borenium cations as key intermediates. DFT calculations reveal the existence and stabilizing effect of π-arene/boron interactions in the (biphenyl)(i-Pr)2 P→BBr2 + species.

3.
Chem Sci ; 15(14): 5187-5191, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577365

RESUMO

Phosphine-boranes do not promote oxidative addition of acyl chlorides to gold, but the phosphine-borane gold triflimide complex [iPr2P(o-C6H4)BCy2]AuNTf2 was found to catalyze the coupling of acyl chlorides and aryl stannanes. The reaction involves aryl/chloride-bridged dinuclear gold(i) complexes as key intermediates, as substantiated by spectroscopic and crystallographic analyses. Similar to Pd(0)/Pd(ii)-catalyzed Stille coupling with phosphine-borane ligands, the gold-catalyzed variant shows complete chemoselectivity for acyl chlorides over aryl iodides and bromides, enabling straightforward access to halogenated aryl ketones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA