Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 64(16): 4877-93, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24043850

RESUMO

Transcription factors of the NAC family are known to be involved in various developmental processes and in response to environmental stresses. Whereas NAC genes have been widely studied in response to abiotic stresses, little is known about their role in response to biotic stresses, especially in crops. Here, the first characterization of a Vitis vinifera L. NAC member, named VvNAC1, and involved in organ development and defence towards pathogens is reported. Expression profile analysis of VvNAC1 showed that its expression is closely associated with later stages of leaf, flower, and berry development, suggesting a role in plant senescence. Moreover, VvNAC1 expression is stimulated in Botrytis cinerea- or microbe-associated molecular pattern (MAMP)-infected berries or leaves. Furthermore, cold, wounding, and defence-related hormones such as salicylic acid, methyl jasmonate, ethylene, and abscisic acid are all able to induce VvNAC1 expression in grapevine leaves. VvNAC1-overexpressing Arabidopsis plants exhibit enhanced tolerance to osmotic, salt, and cold stresses and to B. cinerea and Hyaloperonospora arabidopsidis pathogens. These plants present a modified pattern of defence gene markers (AtPR-1, AtPDF1.2, and AtVSP1) after stress application, suggesting that VvNAC1 is an important regulatory component of the plant signalling defence cascade. Collectively, these results provide evidence that VvNAC1 could represent a node of convergence regulating grapevine development and stress responses, including defence against necrotrophic and biotrophic pathogens.


Assuntos
Botrytis/fisiologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Vitis/crescimento & desenvolvimento , Vitis/microbiologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Vitis/genética , Vitis/metabolismo
2.
Planta ; 234(2): 405-17, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21505863

RESUMO

Studying grapevine (Vitis vinifera) innate defense mechanisms is a prerequisite to the development of new protection strategies, based on the stimulation of plant signaling pathways to trigger pathogen resistance. Two transcriptional coactivators (VvNPR1.1 and VvNPR1.2) with similarity to Arabidopsis thaliana NPR1 (Non-Expressor of PR genes 1), a well-characterized and key signaling element of the salicylic acid (SA) pathway, were recently isolated in Vitis vinifera. In this study, functional characterization of VvNPR1.1 and VvNPR1.2, including complementation of the Arabidopsis npr1 mutant, revealed that VvNPR1.1 is a functional ortholog of AtNPR1, whereas VvNPR1.2 likely has a different function. Ectopic overexpression of VvNPR1.1 in the Arabidopsis npr1-2 mutant restored plant growth at a high SA concentration, Pathogenesis Related 1 (PR1) gene expression after treatment with SA or bacterial inoculation, and resistance to virulent Pseudomonas syringae pv. maculicola bacteria. Moreover, stable overexpression of VvNPR1.1-GFP in V. vinifera resulted in constitutive nuclear localization of the fusion protein and enhanced PR gene expression in uninfected plants. Furthermore, grapevine plants overexpressing VvNPR1.1-GFP exhibited an enhanced resistance to powdery mildew infection. This work highlights the importance of the conserved SA/NPR1 signaling pathway for resistance to biotrophic pathogens in V. vinifera.


Assuntos
Anti-Infecciosos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Vitis/genética , Sequência de Aminoácidos , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Ascomicetos/fisiologia , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Plantas Geneticamente Modificadas/fisiologia , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Transdução de Sinais , Fatores de Tempo , Vitis/metabolismo , Vitis/microbiologia , Vitis/fisiologia
3.
BMC Plant Biol ; 9: 54, 2009 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-19432948

RESUMO

BACKGROUND: Grapevine protection against diseases needs alternative strategies to the use of phytochemicals, implying a thorough knowledge of innate defense mechanisms. However, signalling pathways and regulatory elements leading to induction of defense responses have yet to be characterized in this species. In order to study defense response signalling to pathogens in Vitis vinifera, we took advantage of its recently completed genome sequence to characterize two putative orthologs of NPR1, a key player in salicylic acid (SA)-mediated resistance to biotrophic pathogens in Arabidopsis thaliana. RESULTS: Two cDNAs named VvNPR1.1 and VvNPR1.2 were isolated from Vitis vinifera cv chardonnay, encoding proteins showing 55% and 40% identity to Arabidopsis NPR1 respectively. Constitutive expression of VvNPR1.1 and VvNPR1.2 monitored in leaves of V. vinifera cv chardonnay was found to be enhanced by treatment with benzothiadiazole, a SA analog. In contrast, VvNPR1.1 and VvNPR1.2 transcript levels were not affected during infection of resistant Vitis riparia or susceptible V. vinifera with Plasmopara viticola, the causal agent of downy mildew, suggesting regulation of VvNPR1 activity at the protein level. VvNPR1.1-GFP and VvNPR1.2-GFP fusion proteins were transiently expressed by agroinfiltration in Nicotiana benthamiana leaves, where they localized predominantly to the nucleus. In this system, VvNPR1.1 and VvNPR1.2 expression was sufficient to trigger the accumulation of acidic SA-dependent pathogenesis-related proteins PR1 and PR2, but not of basic chitinases (PR3) in the absence of pathogen infection. Interestingly, when VvNPR1.1 or AtNPR1 were transiently overexpressed in Vitis vinifera leaves, the induction of grapevine PR1 was significantly enhanced in response to P. viticola. CONCLUSION: In conclusion, our data identified grapevine homologs of NPR1, and their functional analysis showed that VvNPR1.1 and VvNPR1.2 likely control the expression of SA-dependent defense genes. Overexpression of VvNPR1 has thus the potential to enhance grapevine defensive capabilities upon fungal infection. As a consequence, manipulating VvNPR1 and other signalling elements could open ways to strengthen disease resistance mechanisms in this crop species.


Assuntos
Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Oomicetos/patogenicidade , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , RNA de Plantas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Tiadiazóis/farmacologia , Nicotiana/genética , Nicotiana/metabolismo , Vitis/metabolismo , Vitis/microbiologia
4.
Plant Physiol Biochem ; 46(4): 469-81, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17988883

RESUMO

The reduction of phytochemicals applied to grapevine relies on the development of alternative strategies involving activation of the plant's own defense system. The aim of this work was to study the signaling of defense responses to pathogens in Vitis vinifera. We identified in V. vinifera cv. Chardonnay two putative regulatory elements, VvNHL1 and VvEDS1, with similarity to Arabidopsis defense regulators NDR1 and EDS1. Expression studies of these putative signaling genes together with other known grape defense genes show that they are differentially regulated by salicylic acid and jasmonate-ethylene treatments, as well as by inoculation with different types of pathogens. The expression of VvEDS1 was stimulated by salicylic acid treatment, Botrytis cinerea and Plasmopara viticola inoculation, whereas VvNHL1 was repressed by B. cinerea. VvNHL1 overexpression introduced in Arabidopsis ndr1 mutant did not complement the mutation in terms of sensitivity to avirulent Pseudomonas syringae pv. tomato. Moreover, we observed a weakened resistance to B. cinerea of ndr1 mutants overexpressing VvNHL1, which may be related to cell death enhancement. Together, our results identify two new pathogen-responsive regulatory elements in Vitis vinifera, with potential roles in pathogen defense.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Doenças das Plantas , Elementos de Resposta , Transdução de Sinais , Vitis/metabolismo , Doenças das Plantas/microbiologia
5.
Plant Physiol ; 146(3): 1142-54, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18162594

RESUMO

Understanding the role of transcription factors (TFs) is essential in reconstructing developmental regulatory networks. The plant-specific GeBP TF family of Arabidopsis thaliana (Arabidopsis) comprises 21 members, all of unknown function. A subset of four members, the founding member GeBP and GeBP-like proteins (GPL) 1, 2, and 3, shares a conserved C-terminal domain. Here we report that GeBP/GPL genes represent a newly defined class of leucine-zipper (Leu-zipper) TFs and that they play a redundant role in cytokinin hormone pathway regulation. Specifically, we demonstrate using yeast, in vitro, and split-yellow fluorescent protein in planta assays that GeBP/GPL proteins form homo- and heterodimers through a noncanonical Leu-zipper motif located in the C-terminal domain. A triple loss-of-function mutant of the three most closely related genes gebp gpl1 gpl2 shows a reduced sensitivity to exogenous cytokinins in a subset of cytokinin responses such as senescence and growth, whereas root inhibition is not affected. We find that transcript levels of type-A cytokinin response genes, which are involved in the negative feedback regulation of cytokinin signaling, are higher in the triple mutant. Using a GPL version that acts as a constitutive transcriptional activator, we show that the regulation of Arabidopsis response regulators (ARRs) is mediated by at least one additional, as yet unknown, repressor acting genetically downstream in the GeBP/GPL pathway. Our results indicate that GeBP/GPL genes encode a new class of unconventional Leu-zipper TF proteins and suggest that their role in the cytokinin pathway is to antagonize the negative feedback regulation on ARR genes to trigger the cytokinin response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Dimerização , Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica de Plantas , Zíper de Leucina , Família Multigênica , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA