Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(49): 31114-31122, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229570

RESUMO

The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is a P-type ATPase that transports Ca2+ from the cytosol into the sarco(endo)plasmic reticulum (SR/ER) lumen, driven by ATP. This primary transport activity depends on tight coupling between movements of the transmembrane helices forming the two Ca2+-binding sites and the cytosolic headpiece mediating ATP hydrolysis. We have addressed the molecular basis for this intramolecular communication by analyzing the structure and functional properties of the SERCA mutant E340A. The mutated Glu340 residue is strictly conserved among the P-type ATPase family of membrane transporters and is located at a seemingly strategic position at the interface between the phosphorylation domain and the cytosolic ends of 5 of SERCA's 10 transmembrane helices. The mutant displays a marked slowing of the Ca2+-binding kinetics, and its crystal structure in the presence of Ca2+ and ATP analog reveals a rotated headpiece, altered connectivity between the cytosolic domains, and an altered hydrogen bonding pattern around residue 340. Supported by molecular dynamics simulations, we conclude that the E340A mutation causes a stabilization of the Ca2+ sites in a more occluded state, hence displaying slowed dynamics. This finding underpins a crucial role of Glu340 in interdomain communication between the headpiece and the Ca2+-binding transmembrane region.


Assuntos
Proteínas de Ligação ao Cálcio/ultraestrutura , Cálcio/metabolismo , Conformação Proteica em alfa-Hélice , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/ultraestrutura , Trifosfato de Adenosina/química , Sequência de Aminoácidos/genética , Asparagina/química , Sítios de Ligação/genética , Cálcio/química , Sinalização do Cálcio/genética , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Cristalografia por Raios X , Citosol/metabolismo , Escherichia coli/enzimologia , Humanos , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Mutação/genética , Fosforilação/genética , Domínios Proteicos/genética , Estrutura Secundária de Proteína , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Triptofano/química
2.
EMBO J ; 32(24): 3231-43, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24270570

RESUMO

The sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) couples ATP hydrolysis to transport of Ca(2+). This directed energy transfer requires cross-talk between the two Ca(2+) sites and the phosphorylation site over 50 Å distance. We have addressed the mechano-structural basis for this intramolecular signal by analysing the structure and the functional properties of SERCA mutant E309Q. Glu(309) contributes to Ca(2+) coordination at site II, and a consensus has been that E309Q only binds Ca(2+) at site I. The crystal structure of E309Q in the presence of Ca(2+) and an ATP analogue, however, reveals two occupied Ca(2+) sites of a non-catalytic Ca2E1 state. Ca(2+) is bound with micromolar affinity by both Ca(2+) sites in E309Q, but without cooperativity. The Ca(2+)-bound mutant does phosphorylate from ATP, but at a very low maximal rate. Phosphorylation depends on the correct positioning of the A-domain, requiring a shift of transmembrane segment M1 into an 'up and kinked position'. This transition is impaired in the E309Q mutant, most likely due to a lack of charge neutralization and altered hydrogen binding capacities at Ca(2+) site II.


Assuntos
Cálcio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Trifosfato de Adenosina/metabolismo , Catálise , Cristalografia por Raios X , Modelos Moleculares , Fosforilação , Conformação Proteica , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
3.
J Virol ; 89(20): 10333-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26246575

RESUMO

UNLABELLED: In hepatitis C virus (HCV)-infected cells, the envelope glycoproteins E1 and E2 assemble as a heterodimer. To investigate potential changes in the oligomerization of virion-associated envelope proteins, we performed SDS-PAGE under reducing conditions but without thermal denaturation. This revealed the presence of SDS-resistant trimers of E1 in the context of cell-cultured HCV (HCVcc) as well as in the context of HCV pseudoparticles (HCVpp). The formation of E1 trimers was found to depend on the coexpression of E2. To further understand the origin of E1 trimer formation, we coexpressed in bacteria the transmembrane (TM) domains of E1 (TME1) and E2 (TME2) fused to reporter proteins and analyzed the fusion proteins by SDS-PAGE and Western blotting. As expected for strongly interacting TM domains, TME1-TME2 heterodimers resistant to SDS were observed. These analyses also revealed homodimers and homotrimers of TME1, indicating that such complexes are stable species. The N-terminal segment of TME1 exhibits a highly conserved GxxxG sequence, a motif that is well documented to be involved in intramembrane protein-protein interactions. Single or double mutations of the glycine residues (Gly354 and Gly358) in this motif markedly decreased or abrogated the formation of TME1 homotrimers in bacteria, as well as homotrimers of E1 in both HCVpp and HCVcc systems. A concomitant loss of infectivity was observed, indicating that the trimeric form of E1 is essential for virus infectivity. Taken together, these results indicate that E1E2 heterodimers form trimers on HCV particles, and they support the hypothesis that E1 could be a fusion protein. IMPORTANCE: HCV glycoproteins E1 and E2 play an essential role in virus entry into liver cells as well as in virion morphogenesis. In infected cells, these two proteins form a complex in which E2 interacts with cellular receptors, whereas the function of E1 remains poorly understood. However, recent structural data suggest that E1 could be the protein responsible for the process of fusion between viral and cellular membranes. Here we investigated the oligomeric state of HCV envelope glycoproteins. We demonstrate that E1 forms functional trimers after virion assembly and that in addition to the requirement for E2, a determinant for this oligomerization is present in a conserved GxxxG motif located within the E1 transmembrane domain. Taken together, these results indicate that a rearrangement of E1E2 heterodimer complexes likely occurs during the assembly of HCV particles to yield a trimeric form of the E1E2 heterodimer. Gaining structural information on this trimer will be helpful for the design of an anti-HCV vaccine.


Assuntos
Hepacivirus/química , Proteínas Recombinantes de Fusão/química , Proteínas do Envelope Viral/química , Vírion/química , Motivos de Aminoácidos , Sítios de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Hepacivirus/genética , Hepacivirus/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Proteínas do Envelope Viral/genética , Vírion/genética , Vírion/ultraestrutura , Montagem de Vírus , Internalização do Vírus
4.
Anal Biochem ; 511: 31-5, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27443956

RESUMO

This report is a follow up of our previous paper (Lund, Orlowski, de Foresta, Champeil, le Maire and Møller (1989), J Biol Chem 264:4907-4915) showing that solubilization in detergent of a membrane protein may interfere with its long-term stability, and proposing a protocol to reveal the kinetics of such irreversible inactivation. We here clarify the fact that when various detergents are tested for their effects, special attention has of course to be paid to their critical micelle concentration. We also investigate the effects of a few more detergents, some of which have been recently advertised in the literature, and emphasize the role of lipids together with detergents. Among these detergents, lauryl maltose neopentyl glycol (LMNG) exerts a remarkable ability, even higher than that of ß-dodecylmaltoside (DDM), to protect our test enzyme, the paradigmatic P-type ATPase SERCA1a from sarcoplasmic reticulum. Performing such experiments for one's favourite protein probably remains useful in pre-screening assays testing various detergents.


Assuntos
Detergentes/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Animais , Estabilidade Enzimática , Coelhos
5.
J Biol Chem ; 289(49): 33850-61, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25301946

RESUMO

Sarcolipin (SLN) is a regulatory peptide present in sarcoplasmic reticulum (SR) from skeletal muscle of animals. We find that native rabbit SLN is modified by a fatty acid anchor on Cys-9 with a palmitic acid in about 60% and, surprisingly, an oleic acid in the remaining 40%. SLN used for co-crystallization with SERCA1a (Winther, A. M., Bublitz, M., Karlsen, J. L., Moller, J. V., Hansen, J. B., Nissen, P., and Buch-Pedersen, M. J. (2013) Nature 495, 265-2691; Ref. 1) is also palmitoylated/oleoylated, but is not visible in crystal structures, probably due to disorder. Treatment with 1 m hydroxylamine for 1 h removes the fatty acids from a majority of the SLN pool. This treatment did not modify the SERCA1a affinity for Ca(2+) but increased the Ca(2+)-dependent ATPase activity of SR membranes indicating that the S-acylation of SLN or of other proteins is required for this effect on SERCA1a. Pig SLN is also fully palmitoylated/oleoylated on its Cys-9 residue, but in a reverse ratio of about 40/60. An alignment of 67 SLN sequences from the protein databases shows that 19 of them contain a cysteine and the rest a phenylalanine at position 9. Based on a cladogram, we postulate that the mutation from phenylalanine to cysteine in some species is the result of an evolutionary convergence. We suggest that, besides phosphorylation, S-acylation/deacylation also regulates SLN activity.


Assuntos
Cisteína/química , Proteínas Musculares/química , Músculo Esquelético/metabolismo , Ácido Oleico/química , Ácido Palmítico/química , Fenilalanina/química , Processamento de Proteína Pós-Traducional , Proteolipídeos/química , Sequência de Aminoácidos , Animais , Evolução Biológica , Cristalografia por Raios X , Cisteína/metabolismo , Expressão Gênica , Hidroxilamina/química , Cinética , Lipoilação , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/classificação , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/química , Ácido Oleico/metabolismo , Ácido Palmítico/metabolismo , Fenilalanina/metabolismo , Filogenia , Proteolipídeos/classificação , Proteolipídeos/genética , Proteolipídeos/metabolismo , Coelhos , Retículo Sarcoplasmático , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Alinhamento de Sequência , Especificidade da Espécie , Suínos , Termodinâmica
6.
J Biol Chem ; 288(38): 27307-27314, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23897808

RESUMO

Mechanosensitive channels are detected in all cells and are speculated to play a key role in many functions including osmoregulation, growth, hearing, balance, and touch. In prokaryotic cells, a direct gating of mechanosensitive channels by membrane tension was clearly demonstrated because the purified channels could be functionally reconstituted in a lipid bilayer. No such evidence has been presented yet in the case of mechanosensitive channels from animal cells. TREK-1, a two-pore domain K(+) channel, was the first animal mechanosensitive channel identified at the molecular level. It is the target of a large variety of agents such as volatile anesthetics, neuroprotective agents, and antidepressants. We have produced the mouse TREK-1 in yeast, purified it, and reconstituted the protein in giant liposomes amenable to patch clamp recording. The protein exhibited the expected electrophysiological properties in terms of kinetics, selectivity, and pharmacology. Negative pressure (suction) applied through the pipette had no effect on the channel, but positive pressure could completely and reversibly close the channel. Our interpretation of these data is that the intrinsic tension in the lipid bilayer is sufficient to maximally activate the channel, which can be closed upon modification of the tension. These results indicate that TREK-1 is directly sensitive to membrane tension.


Assuntos
Membrana Celular/química , Lipossomos/química , Canais de Potássio de Domínios Poros em Tandem/química , Pressão , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Lipossomos/metabolismo , Camundongos , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/isolamento & purificação , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Tensão Superficial
7.
Analyst ; 139(17): 4231-40, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-24965041

RESUMO

Infrared spectroscopy was used to characterise recombinant sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a). In the amide I region, its spectrum differed from that of Ca(2+)-ATPase prepared from rabbit fast twitch muscle below 1650 cm(-1). A band at 1642 cm(-1) is reduced in the spectrum of the recombinant protein and a band at 1631 cm(-1) is more prominent. By comparison of amide I band areas with the known secondary structure content of the protein, we assigned the 1642 cm(-1) band to ß-sheet structure. Further investigation revealed that the 1642 cm(-1) band decreased and the 1631 cm(-1) band increased upon storage at room temperature and upon repeated washing of a protein film with water. Also protein aggregates obtained after solubilisation of the rabbit muscle enzyme showed a prominent band at 1631 cm(-1), whereas the spectrum of solubilised ATPase resembled that of the membrane bound protein. The spectral position of the 1631 cm(-1) band is similar to that of a band observed for inclusion bodies of other proteins. The findings show that the absence of the 1642 cm(-1) band and the presence of a prominent band at 1631 cm(-1) indicate protein aggregation and can be used as a quality marker for the optimisation of recombinant protein production. We conclude that recombinant production of SERCA1a, storage at room temperature, repeated washing and aggregation after solubilisation all modify existing ß-sheets in the cytosolic domains so that they become similar to those found in inclusion bodies of other proteins.


Assuntos
Agregados Proteicos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Animais , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
8.
J Biol Chem ; 287(50): 41963-78, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23055529

RESUMO

The H(+),K(+)-ATPase pumps protons or hydronium ions and is responsible for the acidification of the gastric fluid. It is made up of an α-catalytic and a ß-glycosylated subunit. The relation between cation translocation and the organization of the protein in the membrane are not well understood. We describe here how pure and functionally active pig gastric H(+),K(+)-ATPase with an apparent Stokes radius of 6.3 nm can be obtained after solubilization with the non-ionic detergent C(12)E(8), followed by exchange of C(12)E(8) with Tween 20 on a Superose 6 column. Mass spectroscopy indicates that the ß-subunit bears an excess mass of 9 kDa attributable to glycosylation. From chemical analysis, there are 0.25 g of phospholipids and around 0.024 g of cholesterol bound per g of protein. Analytical ultracentrifugation shows one main complex, sedimenting at s(20,)(w) = 7.2 ± 0.1 S, together with minor amounts of irreversibly aggregated material. From these data, a buoyant molecular mass is calculated, corresponding to an H(+),K(+)-ATPase α,ß-protomer of 147.3 kDa. Complementary sedimentation velocity with deuterated water gives a picture of an α,ß-protomer with 0.9-1.4 g/g of bound detergent and lipids and a reasonable frictional ratio of 1.5, corresponding to a Stokes radius of 7.1 nm. An α(2),ß(2) dimer is rejected by the data. Light scattering coupled to gel filtration confirms the monomeric state of solubilized H(+),K(+)-ATPase. Thus, α,ß H(+),K(+)-ATPase is active at least in detergent and may plausibly function as a monomer, as has been established for other P-type ATPases, Ca(2+)-ATPase and Na(+),K(+)-ATPase.


Assuntos
Detergentes/química , Mucosa Gástrica/enzimologia , ATPase Trocadora de Hidrogênio-Potássio/química , Animais , ATPase Trocadora de Hidrogênio-Potássio/isolamento & purificação , Estrutura Quaternária de Proteína , Solubilidade , Suínos , Ultracentrifugação
9.
J Biol Chem ; 287(16): 13249-61, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22351780

RESUMO

Here, Drs2p, a yeast lipid translocase that belongs to the family of P(4)-type ATPases, was overexpressed in the yeast Saccharomyces cerevisiae together with Cdc50p, its glycosylated partner, as a result of the design of a novel co-expression vector. The resulting high yield allowed us, using crude membranes or detergent-solubilized membranes, to measure the formation from [γ-(32)P]ATP of a (32)P-labeled transient phosphoenzyme at the catalytic site of Drs2p. Formation of this phosphoenzyme could be detected only if Cdc50p was co-expressed with Drs2p but was not dependent on full glycosylation of Cdc50p. It was inhibited by orthovanadate and fluoride compounds. In crude membranes, the phosphoenzyme formed at steady state at 4 °C displayed ADP-insensitive but temperature-sensitive decay. Solubilizing concentrations of dodecyl maltoside left this decay rate almost unaltered, whereas several other detergents accelerated it. Unexpectedly, the dephosphorylation rate for the solubilized Drs2p·Cdc50p complex was inhibited by the addition of phosphatidylserine. Phosphatidylserine exerted its anticipated accelerating effect on the dephosphorylation of Drs2p·Cdc50p complex only in the additional presence of phosphatidylinositol-4-phosphate. These results explain why phosphatidylinositol-4-phosphate tightly controls Drs2p-catalyzed lipid transport and establish the functional relevance of the Drs2p·Cdc50p complex overexpressed here.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/metabolismo , Ácido Aspártico/metabolismo , ATPases Transportadoras de Cálcio/genética , Detergentes/farmacologia , Fluoretos/farmacologia , Radioisótopos de Fósforo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Plasmídeos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Solubilidade , Vanadatos/farmacologia
10.
J Biol Chem ; 285(37): 28883-92, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20551329

RESUMO

Thapsigargin (Tg), a specific inhibitor of sarco/endoplasmic Ca(2+)-ATPases (SERCA), binds with high affinity to the E2 conformation of these ATPases. SERCA inhibition leads to elevated calcium levels in the cytoplasm, which in turn induces apoptosis. We present x-ray crystallographic and intrinsic fluorescence data to show how Tg and chemical analogs of the compound with modified or removed side chains bind to isolated SERCA 1a membranes. This occurs by uptake via the membrane lipid followed by insertion into a resident intramembranous binding site with few adaptative changes. Our binding data indicate that a balanced hydrophobicity and accurate positioning of the side chains, provided by the central guaianolide ring structure, defines a pharmacophore of Tg that governs both high affinity and access to the protein-binding site. Tg analogs substituted with long linkers at O-8 extend from the binding site between transmembrane segments to the putative N-terminal Ca(2+) entry pathway. The long chain analogs provide a rational basis for the localization of the linker, the presence of which is necessary for enabling prostate-specific antigen to cleave peptide-conjugated prodrugs targeting SERCA of cancer cells (Denmeade, S. R., Jakobsen, C. M., Janssen, S., Khan, S. R., Garrett, E. S., Lilja, H., Christensen, S. B., and Isaacs, J. T. (2003) J. Natl. Cancer Inst. 95, 990-1000). Our study demonstrates the usefulness of a simple in vitro system to test and direct development toward the formulation of new Tg derivatives with improved properties for SERCA targeting. Finally, we propose that the Tg binding pocket may be a regulatory site that, for example, is sensitive to cholesterol.


Assuntos
Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Tapsigargina/análogos & derivados , Tapsigargina/química , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Neoplasias/tratamento farmacológico , Ligação Proteica/efeitos dos fármacos
11.
J Biol Chem ; 285(34): 26406-16, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20530490

RESUMO

The antimalarial drugs artemisinins have been described as inhibiting Ca(2+)-ATPase activity of PfATP6 (Plasmodium falciparum ATP6) after expression in Xenopus oocytes. Mutation of an amino acid residue in mammalian SERCA1 (Glu(255)) to the equivalent one predicted in PfATP6 (Leu) was reported to induce sensitivity to artemisinin in the oocyte system. However, in the present experiments, we found that artemisinin did not inhibit mammalian SERCA1a E255L either when expressed in COS cells or after purification of the mutant expressed in Saccharomyces cerevisiae. Moreover, we found that PfATP6 after expression and purification from S. cerevisiae was insensitive to artemisinin and significantly less sensitive to thapsigargin and 2,5-di(tert-butyl)-1,4-benzohydroquinone than rabbit SERCA1 but retained higher sensitivity to cyclopiazonic acid, another type of SERCA1 inhibitor. Although mammalian SERCA and purified PfATP6 appear to have different pharmacological profiles, their insensitivity to artemisinins suggests that the mechanism of action of this class of drugs on the calcium metabolism in the intact cell is complex and cannot be ascribed to direct inhibition of PfATP6. Furthermore, the successful purification of PfATP6 affords the opportunity to develop new antimalarials by screening for inhibitors against PfATP6.


Assuntos
Artemisininas/farmacologia , ATPases Transportadoras de Cálcio/efeitos dos fármacos , Mutação de Sentido Incorreto , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/efeitos dos fármacos , Animais , Antimaláricos , Células COS , Chlorocebus aethiops , Inibidores Enzimáticos/farmacologia , Proteínas Mutantes , Coelhos , Saccharomyces cerevisiae
12.
Biol Cell ; 102(7): 409-20, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20170475

RESUMO

BACKGROUND INFORMATION: The idea that GPCRs (G-protein-coupled receptors) may exist as homo- or hetero-oligomers, although still controversial, is now widely accepted. Nevertheless, the functional roles of oligomerization are still unclear and gaining greater insight into the mechanisms underlying the dynamics of GPCR assembly and, in particular, assessing the effect of ligands on this process seems important. We chose to focus our present study on the effect of MT7 (muscarinic toxin 7), a highly selective allosteric peptide ligand, on the oligomerization state of the hM1 (human M1 muscarinic acetylcholine receptor subtype). RESULTS: We analysed the hM1 oligomerization state in membrane preparations or in live cells and observed the effect of MT7 via four complementary techniques: native-PAGE electrophoresis analysed by both Western blotting and autoradiography on solubilized membrane preparations of CHO-M1 cells (Chinese-hamster ovary cells expressing muscarinic M1 receptors); FRET (fluorescence resonance energy transfer) experiments on cells expressing differently tagged M1 receptors using either an acceptor photobleaching approach or a novel fluorescence emission anisotropy technique; and, finally, by BRET (bioluminescence resonance energy transfer) assays. Our results reveal that MT7 seems to protect the M1 receptor from the dissociating effect of the detergent and induces an increase in the FRET and BRET signals, highlighting its ability to affect the dimeric form of the receptor. CONCLUSIONS: Our results suggest that MT7 binds to a dimeric form of hM1 receptor, favouring the stability of this receptor state at the cellular level, probably by inducing some conformational rearrangements of the pre-existing muscarinic receptor homodimers.


Assuntos
Venenos Elapídicos/toxicidade , Receptor Muscarínico M1/química , Receptor Muscarínico M1/metabolismo , Animais , Autorradiografia , Western Blotting , Células CHO , Cricetinae , Cricetulus , Eletroforese em Gel de Poliacrilamida , Polarização de Fluorescência , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Ligantes , Fotodegradação/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Solubilidade/efeitos dos fármacos
13.
Sci Rep ; 11(1): 1641, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452371

RESUMO

Sarcolipin (SLN), a single-spanning membrane protein, is a regulator of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA1a). Chemically synthesized SLN, palmitoylated or not (pSLN or SLN), and recombinant wild-type rabbit SERCA1a expressed in S. cerevisiae design experimental conditions that provide a deeper understanding of the functional role of SLN on the regulation of SERCA1a. Our data show that chemically synthesized SLN interacts with recombinant SERCA1a, with calcium-deprived E2 state as well as with calcium-bound E1 state. This interaction hampers the binding of calcium in agreement with published data. Unexpectedly, SLN has also an allosteric effect on SERCA1a transport activity by impairing the binding of ATP. Our results reveal that SLN significantly slows down the E2 to Ca2.E1 transition of SERCA1a while it affects neither phosphorylation nor dephosphorylation. Comparison with chemically synthesized SLN deprived of acylation demonstrates that palmitoylation is not necessary for either inhibition or association with SERCA1a. However, it has a small but statistically significant effect on SERCA1a phosphorylation when various ratios of SLN-SERCA1a or pSLN-SERCA1a are tested.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Proteínas Musculares/metabolismo , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Regulação Alostérica , Animais , Cinética , Fosforilação , Ligação Proteica , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
14.
Emerg Microbes Infect ; 10(1): 132-147, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33372863

RESUMO

Gene targeting approaches have demonstrated the essential role for the malaria parasite of membrane transport proteins involved in lipid transport and in the maintenance of membrane lipid asymmetry, representing emerging oportunites for therapeutical intervention. This is the case of ATP2, a Plasmodium-encoded 4 P-type ATPase (P4-ATPase or lipid flippase), whose activity is completely irreplaceable during the asexual stages of the parasite. Moreover, a recent chemogenomic study has situated ATP2 as the possible target of two antimalarial drug candidates. In eukaryotes, P4-ATPases assure the asymmetric phospholipid distribution in membranes by translocating phospholipids from the outer to the inner leaflet. In this work, we have used a recombinantly-produced P. chabaudi ATP2 (PcATP2), to gain insights into the function and structural organization of this essential transporter. Our work demonstrates that PcATP2 associates with two of the three Plasmodium-encoded Cdc50 proteins: PcCdc50B and PcCdc50A. Purified PcATP2/PcCdc50B complex displays ATPase activity in the presence of either phosphatidylserine or phosphatidylethanolamine. In addition, this activity is upregulated by phosphatidylinositol 4-phosphate. Overall, our work describes the first biochemical characterization of a Plasmodium lipid flippase, a first step towards the understanding of the essential physiological role of this transporter and towards its validation as a potential antimalarial drug target.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Membrana/metabolismo , Plasmodium/enzimologia , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Transporte Biológico , Clonagem Molecular , Hidrólise , Modelos Moleculares , Fosfolipídeos/metabolismo , Plasmodium/genética , Ligação Proteica , Conformação Proteica , ATPases Translocadoras de Prótons/química , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transformação Genética
15.
PLoS One ; 14(10): e0222932, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31618200

RESUMO

The present study mainly consists of a re-evaluation of the rate at which C12E8, a typical non-ionic detergent used for membrane studies, is able to dissociate from biological membranes, with sarcoplasmic reticulum membrane vesicles being used as an example. Utilizing a brominated derivative of C12E8 and now stopped-flow fluorescence instead of rapid filtration, we found that the rate of dissociation of this detergent from these membranes, merely perturbed with non-solubilizing concentrations of detergent, was significantly faster (t1/2 < 10 ms) than what had previously been determined (t1/2 ~300-400 ms) from experiments based on a rapid filtration protocol using 14C-labeled C12E8 and glass fiber filters (Binding of a non-ionic detergent to membranes: flip-flop rate and location on the bilayer, by Marc le Maire, Jesper Møller and Philippe Champeil, Biochemistry (1987) Vol 26, pages 4803-4810). We here pinpoint a methodological problem of the earlier rapid filtration experiments, and we suggest that the true overall dissociation rate of C12E8 is indeed much faster than previously thought. We also exemplify the case of brominated dodecyl-maltoside, whose kinetics for overall binding to and dissociation from membranes comprise both a rapid and a sower phase, the latter being presumably due to flip-flop between the two leaflets of the membrane. Consequently, equilibrium is reached only after a few seconds for DDM. This work thereby emphasizes the interest of using the fluorescence quenching associated with brominated detergents for studying the kinetics of detergent/membrane interactions, namely association, dissociation and flip-flop rates.


Assuntos
Detergentes/farmacologia , Filtração/métodos , Membranas Intracelulares/metabolismo , Detergentes/química , Retículo Sarcoplasmático/metabolismo , Espectrometria de Fluorescência , Vesículas Transportadoras/metabolismo
16.
Biochemistry ; 47(47): 12319-31, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-18980386

RESUMO

ADP/ATP carriers (AACs) are major and essential constituents of the inner mitochondrial membrane. They drive the import of ADP and the export of newly synthesized ATP. They were described as functional dimers from the 1980s until the structures of the AAC shed doubt on this consensus. We aimed to ascertain the published biophysical data claiming that AACs are dimers and to characterize the oligomeric state of the protein before crystallization. Analytical ultracentrifugation sedimentation velocity experiments clearly show that the bovine AAC is a monomer in 3-laurylamido-N,N'-dimethylpropylaminoxide (LAPAO), whereas in Triton X-100 and reduced Triton X-100, higher molecular mass species can also be identified. Neutron scattering data for monomeric bovine AAC in LAPAO does not give definite conclusions on the association state, because the large amount of detergent and lipids is imperfectly matched by contrast methods. We discuss a possible way to integrate previously published biochemical evidence in favor of assemblies, the lack of well-defined multimers that we observe, and the information from the high-resolution structures, considering supramolecular organizations of AACs within the mitochondrial membrane.


Assuntos
Detergentes/farmacologia , Translocases Mitocondriais de ADP e ATP/química , Multimerização Proteica/efeitos dos fármacos , Animais , Bovinos , Misturas Complexas/farmacologia , Cristalização , Lipídeos/farmacologia , Micelas , Translocases Mitocondriais de ADP e ATP/isolamento & purificação , Translocases Mitocondriais de ADP e ATP/metabolismo , Membranas Mitocondriais/metabolismo , Difração de Nêutrons , Octoxinol/farmacologia , Isoformas de Proteínas/química , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Estrutura Quaternária de Proteína/efeitos dos fármacos , Espalhamento a Baixo Ângulo , Solubilidade , Ultracentrifugação
17.
Curr Opin Struct Biol ; 15(4): 387-93, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16009548

RESUMO

The sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) belongs to the group of P-type ATPases, which actively transport inorganic cations across membranes at the expense of ATP hydrolysis. Three-dimensional structures of several transport intermediates of SERCA1a, stabilized by structural analogues of ATP and phosphoryl groups, are now available at atomic resolution. This has enabled the transport cycle of the protein to be described, including the coupling of Ca(2+) occlusion and phosphorylation by ATP, and of proton counter-transport and dephosphorylation. From these structures, Ca(2+)-ATPase gradually emerges as a molecular mechanical device in which some of the transmembrane segments perform Ca(2+) transport by piston-like movements and by the transmission of reciprocating movements that affect the chemical reactivity of the cytosolic globular domains.


Assuntos
ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Conformação Proteica , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Cálcio/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Fosforilação , Prótons , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Termodinâmica
18.
Biochem J ; 395(2): 345-53, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16405427

RESUMO

BmrA from Bacillus subtilis is a half-size ABC (ATP-binding cassette) transporter involved in multidrug resistance. Although its supramolecular organization has been investigated after reconstitution in a lipid bilayer environment, and shows a dimeric and possibly a tetrameric form, the precise quaternary structure in a detergent-solubilized state has never been addressed. In the present study, BmrA was purified from Escherichia coli membranes using an optimized purification protocol and different detergents. Furthermore, the ATPase activity of BmrA and the quantity of bound lipids and detergent were determined, and the oligomeric state was analysed using SEC (size-exclusion chromatography) and analytical ultracentrifugation. The activity and the quaternary structure of BmrA appeared to be strongly influenced by the type and concentration of the detergent used. SEC data showed that BmrA could be purified in a functional form in 0.05 and 0.01% DDM (n-dodecyl-beta-D-maltoside) and was homogeneous and monodisperse with an R(s) (Stokes radius) of 5.6 nm that is compatible with a dimer structure. Sedimentation-velocity and equilibrium experiments unequivocally supported that BmrA purified in DDM is a dimer and excluded the presence of other oligomeric states. These observations, which are discussed in relation to results obtained in proteoliposomes, also constitute an important first step towards crystallographic studies of BmrA structure.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Bacillus subtilis/química , Detergentes/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cromatografia em Gel , Dimerização , Glucosídeos/farmacologia , Fosfolipídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Solubilidade/efeitos dos fármacos , Ultracentrifugação
19.
PLoS One ; 12(1): e0170481, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28118404

RESUMO

Membrane proteins are largely dependent for their function on the phospholipids present in their immediate environment, and when they are solubilized by detergent for further study, residual phospholipids are critical, too. Here, brominated phosphatidylcholine, a phospholipid which behaves as an unsaturated phosphatidylcholine, was used to reveal the kinetics of phospholipid exchange or transfer from detergent mixed micelles to the environment of a detergent-solubilized membrane protein, the paradigmatic P-type ATPase SERCA1a, in which Trp residues can experience fluorescence quenching by bromine atoms present on phospholipid alkyl chains in their immediate environment. Using dodecylmaltoside as the detergent, exchange of (brominated) phospholipid was found to be much slower than exchange of detergent under the same conditions, and also much slower than membrane solubilization, the latter being evidenced by light scattering changes. The kinetics of this exchange was strongly dependent on temperature. It was also dependent on the total concentration of the mixed micelles, revealing the major role for such exchange of the collision of detergent micelles with the detergent-solubilized protein. Back-transfer of the brominated phospholipid from the solubilized protein to the detergent micelle was much faster if lipid-free DDM micelles instead of mixed micelles were added for triggering dissociation of brominated phosphatidylcholine from the solubilized protein, or in the additional presence of C12E8 detergent during exchange, also emphasizing the role of the chemical nature of the micelle/protein interface. This protocol using brominated lipids appears to be valuable for revealing the possibly slow kinetics of phospholipid transfer to or from detergent-solubilized membrane proteins. Independently, continuous recording of the activity of the protein can also be used in some cases to correlate changes in activity with the exchange of a specific phospholipid, as shown here by using the Drs2p/Cdc50p complex, a lipid flippase with specific binding sites for lipids.


Assuntos
Detergentes/farmacologia , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Micelas , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Difusão , Fluorometria , Glucosídeos/farmacologia , Halogenação , Cinética , Proteínas de Membrana/efeitos dos fármacos , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Solubilidade , Temperatura
20.
Sci Rep ; 7: 41751, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176812

RESUMO

Most membrane proteins studies require the use of detergents, but because of the lack of a general, accurate and rapid method to quantify them, many uncertainties remain that hamper proper functional and structural data analyses. To solve this problem, we propose a method based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) that allows quantification of pure or mixed detergents in complex with membrane proteins. We validated the method with a wide variety of detergents and membrane proteins. We automated the process, thereby allowing routine quantification for a broad spectrum of usage. As a first illustration, we show how to obtain information of the amount of detergent in complex with a membrane protein, essential for liposome or nanodiscs reconstitutions. Thanks to the method, we also show how to reliably and easily estimate the detergent corona diameter and select the smallest size, critical for favoring protein-protein contacts and triggering/promoting membrane protein crystallization, and to visualize the detergent belt for Cryo-EM studies.


Assuntos
Detergentes/química , Proteínas de Membrana/química , Detergentes/metabolismo , Lipossomos , Proteínas de Membrana/metabolismo , Micelas , Modelos Moleculares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA