Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 60(1): 3772-3794, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38726801

RESUMO

Beside the well-documented involvement of secondary somatosensory area, the cortical network underlying late somatosensory evoked potentials (P60/N60 and P100/N100) is still unknown. Electroencephalogram and magnetoencephalogram source imaging were performed to further investigate the origin of the brain cortical areas involved in late somatosensory evoked potentials, using sensory inputs of different strengths and by testing the correlation between cortical sources. Simultaneous high-density electroencephalograms and magnetoencephalograms were performed in 19 participants, and electrical stimulation was applied to the median nerve (wrist level) at intensity between 1.5 and 9 times the perceptual threshold. Source imaging was undertaken to map the stimulus-induced brain cortical activity according to each individual brain magnetic resonance imaging, during three windows of analysis covering early and late somatosensory evoked potentials. Results for P60/N60 and P100/N100 were compared with those for P20/N20 (early response). According to literature, maximal activity during P20/N20 was found in central sulcus contralateral to stimulation site. During P60/N60 and P100/N100, activity was observed in contralateral primary sensorimotor area, secondary somatosensory area (on both hemispheres) and premotor and multisensory associative cortices. Late responses exhibited similar characteristics but different from P20/N20, and no significant correlation was found between early and late generated activities. Specific clusters of cortical activities were activated with specific input/output relationships underlying early and late somatosensory evoked potentials. Cortical networks, partly common to and distinct from early somatosensory responses, contribute to late responses, all participating in the complex somatosensory brain processing.


Assuntos
Eletroencefalografia , Potenciais Somatossensoriais Evocados , Magnetoencefalografia , Córtex Somatossensorial , Humanos , Potenciais Somatossensoriais Evocados/fisiologia , Magnetoencefalografia/métodos , Masculino , Feminino , Adulto , Eletroencefalografia/métodos , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/diagnóstico por imagem , Nervo Mediano/fisiologia , Adulto Jovem , Estimulação Elétrica/métodos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos
2.
Epilepsia ; 65(4): e55-e60, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366848

RESUMO

High-frequency oscillations (HFOs) are associated with normal brain function, but are also increasingly recognized as potential biomarkers of epileptogenic tissue. Considering the important role of interneuron activity in physiological HFO generation, we studied their modulation by midazolam (MDZ), an agonist of γ-aminobutyric acid type A (GABAA)-benzodiazepine receptors. Here, we analyzed 80 intracranial electrode contacts in amygdala and hippocampus of 13 patients with drug-refractory focal epilepsy who had received MDZ for seizure termination during presurgical monitoring. Ripples (80-250 Hz) and fast ripples (FRs; 250-400 Hz) were compared before and after seizures with MDZ application, and according to their origin either within or outside the individual seizure onset zone (SOZ). We found that MDZ distinctly suppressed all HFOs (ripples and FRs), whereas the reduction of ripples was significantly less pronounced inside the SOZ compared to non-SOZ contacts. The rate of FRs inside the SOZ was less affected, especially in hippocampal contacts. In a few cases, even a marked increase of FRs following MDZ administration was seen. Our results demonstrate, for the first time, a significant HFO modulation in amygdala and hippocampus by MDZ, thus giving insights into the malfunction of GABA-mediated inhibition within epileptogenic areas and its role in HFO generation.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Midazolam/farmacologia , Eletroencefalografia/métodos , Convulsões , Hipocampo , Tonsila do Cerebelo , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Ácido gama-Aminobutírico
3.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931756

RESUMO

Wearable in-ear electroencephalographic (EEG) devices hold significant promise for advancing brain monitoring technologies into everyday applications. However, despite the current availability of several in-ear EEG devices in the market, there remains a critical need for robust validation against established clinical-grade systems. In this study, we carried out a detailed examination of the signal performance of a mobile in-ear EEG device from Naox Technologies. Our investigation had two main goals: firstly, evaluating the hardware circuit's reliability through simulated EEG signal experiments and, secondly, conducting a thorough comparison between the in-ear EEG device and gold-standard EEG monitoring equipment. This comparison assesses correlation coefficients with recognized physiological patterns during wakefulness and sleep, including alpha rhythms, eye artifacts, slow waves, spindles, and sleep stages. Our findings support the feasibility of using this in-ear EEG device for brain activity monitoring, particularly in scenarios requiring enhanced comfort and user-friendliness in various clinical and research settings.


Assuntos
Eletroencefalografia , Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Humanos , Encéfalo/fisiologia , Sono/fisiologia , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Vigília/fisiologia
4.
BMC Neurosci ; 23(1): 36, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698042

RESUMO

BACKGROUND: To examine the pathological effect of a mesial temporal seizure onset zone (SOZ) on local and inter-regional response to faces in the amygdala and other structures of the temporal lobe. METHODS: Intracranial EEG data was obtained from the amygdala, hippocampus, fusiform gyrus and parahippocampal gyrus of nine patients with drug-refractory epilepsy during visual stimulation with faces and mosaics. We analyzed event-related potentials (ERP), gamma frequency power, phase-amplitude coupling and phase-slope-index and compared the results between patients with versus without a mesial temporal SOZ. RESULTS: In the amygdala and fusiform gyrus, faces triggered higher ERP amplitudes compared to mosaics in both patient groups and higher gamma power in patients without a mesial temporal SOZ. In the hippocampus, famous faces triggered higher gamma power for both groups combined but did not affect ERPs in either group. The differentiated ERP response to famous faces in the parahippocampal gyrus was more pronounced in patients without a mesial temporal SOZ. Phase-amplitude coupling and phase-slope-index results yielded bidirectional modulation between amygdala and fusiform gyrus, and predominately unidirectional modulation between parahippocampal gyrus and hippocampus. CONCLUSIONS: A mesial temporal SOZ was associated with an impaired response to faces in the amygdala, fusiform gyrus and parahippocampal gyrus in our patients. Compared to this, the response to faces in the hippocampus was impaired in patients with, as well as without, a mesial temporal SOZ. Our results support existing evidence for face processing deficits in patients with a mesial temporal SOZ and suggest the pathological effect of a mesial temporal SOZ on the amygdala to play a pivotal role in this matter in particular.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Eletrocorticografia/métodos , Epilepsia do Lobo Temporal/patologia , Potenciais Evocados , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Convulsões/patologia
5.
J Sleep Res ; 31(6): e13555, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35124848

RESUMO

Acoustic stimulation synchronized to slow oscillations in scalp electroencephalograms has been shown to enhance sleep features, which makes it promising in boosting cognitive functions as well as in the treatment of some sleep disturbances. Nevertheless, scalp electrode sensors are resource intensive and poorly tolerated by sleeping patients. The aim of this study was to investigate the potential usability of in-the-ear electroencephalography to implement auditory closed-loop stimulation during sleep. For this, we evaluated the agreement between slow oscillation recordings obtained through the in-ear sensor and those obtained simultaneously from standard scalp electrodes during naps of 13 healthy subjects. We found that in-ear activity provided enough information to automatically detect sleep slow oscillations in real-time. Based on this, we successfully enhanced scalp slow oscillations using auditory single-cycle closed-loop brain-state-dependent stimulation based on in-ear signals acquired in 11 further subjects. We conclude that in-ear sensors provide a feasible technology for the enhancement of sleep patterns, and could pave the way for new clinical applications in the near future.


Assuntos
Eletroencefalografia , Sono , Humanos , Estimulação Acústica , Sono/fisiologia , Encéfalo/fisiologia , Couro Cabeludo
6.
Proc Natl Acad Sci U S A ; 113(33): 9363-8, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27482084

RESUMO

Beta (ß)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake-sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and ß-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The ß- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) ß- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of ß- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS.


Assuntos
Neocórtex/fisiologia , Sono/fisiologia , Vigília/fisiologia , Animais , Eletroencefalografia , Feminino , Haplorrinos , Humanos , Pessoa de Meia-Idade
7.
Ann Neurol ; 82(6): 1022-1028, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29205475

RESUMO

Focal seizures are assumed to arise from a hypersynchronous activity affecting a circumscribed brain region. Using microelectrodes in seizure-generating deep mesial regions of 9 patients, we investigated the firing of hundreds of single neurons before, during, and after ictal electroencephalogram (EEG) discharges. Neuronal spiking activity at seizure initiation was highly heterogeneous and not hypersynchronous. Furthermore, groups of neurons showed significant changes in activity minutes before the seizure with no concomitant changes in the corresponding macroscopic EEG recordings. Altogether, our findings suggest that only limited subsets of neurons in epileptic depth regions initiate the seizure-onset and that ictogenic mechanisms operate in submillimeter-scale microdomains. Ann Neurol 2017 Ann Neurol 2017;82:1022-1028.


Assuntos
Potenciais de Ação/fisiologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia/tendências , Convulsões/fisiopatologia , Lobo Temporal/fisiopatologia , Epilepsia Resistente a Medicamentos/diagnóstico , Eletrodos Implantados , Humanos , Convulsões/diagnóstico
8.
Epilepsia ; 58(8): 1305-1315, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28622421

RESUMO

OBJECTIVE: Technology for localizing epileptogenic brain regions plays a central role in surgical planning. Recent improvements in acquisition and electrode technology have revealed that high-frequency oscillations (HFOs) within the 80-500 Hz frequency range provide the neurophysiologist with new information about the extent of the epileptogenic tissue in addition to ictal and interictal lower frequency events. Nevertheless, two decades after their discovery there remain questions about HFOs as biomarkers of epileptogenic brain and there use in clinical practice. METHODS: In this review, we provide practical, technical guidance for epileptologists and clinical researchers on recording, evaluation, and interpretation of ripples, fast ripples, and very high-frequency oscillations. RESULTS: We emphasize the importance of low noise recording to minimize artifacts. HFO analysis, either visual or with automatic detection methods, of high fidelity recordings can still be challenging because of various artifacts including muscle, movement, and filtering. Magnetoencephalography and intracranial electroencephalography (iEEG) recordings are subject to the same artifacts. SIGNIFICANCE: High-frequency oscillations are promising new biomarkers in epilepsy. This review provides interested researchers and clinicians with a review of current state of the art of recording and identification and potential challenges to clinical translation.


Assuntos
Ondas Encefálicas/fisiologia , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Guias como Assunto , Eletroencefalografia/normas , Humanos
10.
Brain ; 139(Pt 12): 3084-3091, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27797807

RESUMO

Gamma oscillations play a pivotal role in multiple cognitive functions. They enable coordinated activity and communication of local assemblies, while abnormalities in gamma oscillations exist in different neurological and psychiatric diseases. Thus, a specific rectification of gamma synchronization could potentially compensate the deficits in pathological conditions. Previous experiments have shown that animals can voluntarily modulate their gamma power through operant conditioning. Using a closed-loop experimental setup, we show in six intracerebrally recorded epileptic patients undergoing presurgical evaluation that intracerebral power spectrum can be increased in the gamma frequency range (30-80 Hz) at different fronto-temporal cortical sites in human subjects. Successful gamma training was accompanied by increased gamma power at other cortical locations and progressively enhanced cross-frequency coupling between gamma and slow oscillations (3-12 Hz). Finally, using microelectrode targets in two subjects, we report that upregulation of gamma activities is possible also in spatial micro-domains, without the spread to macroelectrodes. Overall, our findings indicate that intracerebral gamma modulation can be achieved rapidly, beyond the motor system and with high spatial specificity, when using micro targets. These results are especially significant because they pave the way for use of high-resolution therapeutic approaches for future clinical applications.


Assuntos
Eletrocorticografia/métodos , Retroalimentação Sensorial/fisiologia , Lobo Frontal/fisiologia , Ritmo Gama/fisiologia , Neurorretroalimentação/métodos , Lobo Temporal/fisiologia , Adulto , Eletrodos Implantados , Epilepsia/fisiopatologia , Epilepsia/cirurgia , Humanos
11.
Neurobiol Dis ; 89: 180-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26873552

RESUMO

DEP-domain containing 5 (DEPDC5), encoding a repressor of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, has recently emerged as a major gene mutated in familial focal epilepsies and focal cortical dysplasia. Here we established a global knockout rat using TALEN technology to investigate in vivo the impact of Depdc5-deficiency. Homozygous Depdc5(-/-) embryos died from embryonic day 14.5 due to a global growth delay. Constitutive mTORC1 hyperactivation was evidenced in the brains and in cultured fibroblasts of Depdc5(-/-) embryos, as reflected by enhanced phosphorylation of its downstream effectors S6K1 and rpS6. Consistently, prenatal treatment with mTORC1 inhibitor rapamycin rescued the phenotype of Depdc5(-/-) embryos. Heterozygous Depdc5(+/-) rats developed normally and exhibited no spontaneous electroclinical seizures, but had altered cortical neuron excitability and firing patterns. Depdc5(+/-) rats displayed cortical cytomegalic dysmorphic neurons and balloon-like cells strongly expressing phosphorylated rpS6, indicative of mTORC1 upregulation, and not observed after prenatal rapamycin treatment. These neuropathological abnormalities are reminiscent of the hallmark brain pathology of human focal cortical dysplasia. Altogether, Depdc5 knockout rats exhibit multiple features of rodent models of mTORopathies, and thus, stand as a relevant model to study their underlying pathogenic mechanisms.


Assuntos
Córtex Cerebral/anormalidades , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Animais Geneticamente Modificados , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Desenvolvimento Embrionário/efeitos dos fármacos , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Genótipo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Neurônios/patologia , Neurônios/fisiologia , Fosforilação , Ratos , Ratos Endogâmicos F344 , Ratos Wistar , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/administração & dosagem , Serina-Treonina Quinases TOR/antagonistas & inibidores
12.
Ann Neurol ; 77(2): 281-90, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25448920

RESUMO

OBJECTIVE: Transient high-frequency oscillations (HFOs; 150-600Hz) in local field potentials generated by human hippocampal and parahippocampal areas have been related to both physiological and pathological processes. The cellular basis and effects of normal and abnormal forms of HFOs have been controversial. This lack of agreement is clinically significant, because HFOs may be good markers of epileptogenic areas. Better defining the neuronal correlate of specific HFO frequency bands could improve electroencephalographic analyses made before epilepsy surgery. METHODS: Here, we recorded HFOs in slices of the subiculum prepared from human hippocampal tissue resected for treatment of pharmacoresistant epilepsy. With combined intra- or juxtacellular and extracellular recordings, we examined the cellular correlates of interictal and ictal HFO events. RESULTS: HFOs occurred spontaneously in extracellular field potentials during interictal discharges (IIDs) and also during pharmacologically induced preictal discharges (PIDs) preceding ictal-like events. Many of these events included frequencies >250Hz and so might be considered pathological, but a significant proportion were spectrally similar to physiological ripples (150-250Hz). We found that IID ripples were associated with rhythmic γ-aminobutyric acidergic and glutamatergic synaptic potentials with moderate neuronal firing. In contrast, PID ripples were associated with depolarizing synaptic inputs frequently reaching the threshold for bursting in most pyramidal cells. INTERPRETATION: Our data suggest that IID and PID ripple-like oscillations (150-250Hz) in human epileptic hippocampus are associated with 2 distinct population activities that rely on different cellular and synaptic mechanisms. Thus, the ripple band could not help to disambiguate the underlying cellular processes.


Assuntos
Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Potenciais da Membrana/fisiologia , Adolescente , Adulto , Epilepsia/cirurgia , Feminino , Hipocampo/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Adulto Jovem
13.
PLoS Comput Biol ; 9(3): e1002985, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555220

RESUMO

Neuronal activity differs between wakefulness and sleep states. In contrast, an attractor state, called self-organized critical (SOC), was proposed to govern brain dynamics because it allows for optimal information coding. But is the human brain SOC for each vigilance state despite the variations in neuronal dynamics? We characterized neuronal avalanches--spatiotemporal waves of enhanced activity--from dense intracranial depth recordings in humans. We showed that avalanche distributions closely follow a power law--the hallmark feature of SOC--for each vigilance state. However, avalanches clearly differ with vigilance states: slow wave sleep (SWS) shows large avalanches, wakefulness intermediate, and rapid eye movement (REM) sleep small ones. Our SOC model, together with the data, suggested first that the differences are mediated by global but tiny changes in synaptic strength, and second, that the changes with vigilance states reflect small deviations from criticality to the subcritical regime, implying that the human brain does not operate at criticality proper but close to SOC. Independent of criticality, the analysis confirms that SWS shows increased correlations between cortical areas, and reveals that REM sleep shows more fragmented cortical dynamics.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/métodos , Modelos Neurológicos , Neurônios/fisiologia , Fases do Sono/fisiologia , Vigília/fisiologia , Adulto , Biologia Computacional , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Sleep ; 46(6)2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37039660

RESUMO

Closed-loop acoustic stimulation (CLAS) during sleep has shown to boost slow wave (SW) amplitude and spindle power. Moreover, sleep SW have been classified based on different processes of neuronal synchronization. Thus, different types of SW events may have distinct functional roles and be differentially affected by external stimuli. However, the SW synchronization processes affected by CLAS are not well understood. Here, we studied the effect of CLAS on the dissociation of SW events based on two features of neuronal synchronization in the electroencephalogram (topological spread and wave slope). We evaluated and classified individual SW events of 14 healthy subjects during a CLAS stimulated (STM) and a control night (CNT). Three main categories of SW events were found denoting (C1) steep slope SW with global spread, (C2) flat-slope waves with localized spread and homeostatic decline, and (C3) multipeaked flat-slope events with global spread. Comparing between conditions, we found a consistent increase of event proportion and trough amplitudes for C1 events during the time of stimulation. Furthermore, we found similar increases in post-stimulus spectral power in θ, ß, and σ frequencies for CNT vs STIM condition independently of sleep stage or SW categories. However, topological analysis showed differentiated spatial dynamics in N2 and N3 for SW categories and the co-occurrence with spindle events. Our findings support the existence of multiple types of SW with differential response to external stimuli and possible distinct neuronal mechanisms.


Assuntos
Fases do Sono , Sono , Humanos , Estimulação Acústica , Sono/fisiologia , Fases do Sono/fisiologia , Eletroencefalografia , Voluntários Saudáveis
15.
Epilepsia ; 53(9): 1669-76, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22738131

RESUMO

From the very beginning the seizure prediction community faced problems concerning evaluation, standardization, and reproducibility of its studies. One of the main reasons for these shortcomings was the lack of access to high-quality long-term electroencephalography (EEG) data. In this article we present the EPILEPSIAE database, which was made publicly available in 2012. We illustrate its content and scope. The EPILEPSIAE database provides long-term EEG recordings of 275 patients as well as extensive metadata and standardized annotation of the data sets. It will adhere to the current standards in the field of prediction and facilitate reproducibility and comparison of those studies. Beyond seizure prediction, it may also be of considerable benefit for studies focusing on seizure detection, basic neurophysiology, and other fields.


Assuntos
Bases de Dados Factuais , Eletroencefalografia , Epilepsia/epidemiologia , Epilepsia/fisiopatologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Epilepsia/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Brain Commun ; 4(5): fcac183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483575

RESUMO

Presurgical evaluation of mesial temporal and neocortical focal pharmacoresistant epilepsy patients using intracranial EEG recordings has led to the generation of extensive data on interictal epileptiform discharges, located within or remotely from seizure onset zones. In this study, we used this data to investigate how interictal epileptiform discharges are modulated and how their spatial distribution changes during wake and sleep and analysed the relationship between these discharge events and seizure onset zones. Preoperative evaluation data from 11 adult patients with focal pharmacoresistant epilepsy were extracted from the Epilepsiae database. Interictal epileptiform discharges were automatically detected during wakefulness and over several hours of continuous seizure-free sleep (total duration of EEG recordings:106.7 h; mean per patient: 9.7 h), and analysed across four brain areas (mesial temporal, lateral neocortical, basal cortical and the temporal pole). Sleep stages were classified manually from scalp EEG. Discharge events were characterized according to their rate and morphology (amplitude, sharpness and duration). Eight patients had a seizure onset zone over mesial areas and three patients over lateral neocortical areas. Overall, discharge rates varied across brain areas during wakefulness and sleep [wake/sleep stages × brain areas interaction; Wald χ 2(df = 6) = 31.1, P < 0.0001]. N2-N3 non-rapid eye movement sleep increased interictal epileptiform discharges in mesial areas compared with wakefulness and rapid eye movement sleep (P < 0.0001), and to other areas (P < 0.0001 for all comparisons). This mesial pattern was observed both within and outside of seizure onset zones. During wakefulness, the rate of interictal epileptiform discharges was significantly higher than during N2-N3 non-rapid eye movement sleep (P = 0.04), and rapid eye movement sleep (P = 0.01) in lateral neocortical areas (referred to as lateral neocortical pattern), a finding that was more pronounced in seizures onset zones (P = 0.004). The morphological characteristics of the discharge events were modulated during wakefulness and sleep stages across brain areas. The effect of seizure onset zones on discharge morphology was conditioned by brain area and was particularly marked in temporal pole areas. Our analysis of discharge patterns in relation to cerebral localization, vigilance state and the anatomical affiliation of seizure onset zones revealed the global and local aspects of the complex relationship between interictal discharges, sleep and seizure onset zones. This novel approach may lead to a better understanding of cognitive decline and responses to therapy, as well as to adaptation of surgical interventions for epileptic patients.

17.
J Neurosci ; 30(23): 7770-82, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20534826

RESUMO

Gamma oscillations (40-120 Hz), usually associated with waking functions, can be recorded in the deepest stages of sleep in animals. The full details of their large-scale coordination across multiple cortical networks are still unknown. Furthermore, it is not known whether oscillations with similar characteristics are also present in the human brain. In this study, we examined the existence of gamma oscillations during polysomnographically defined sleep-wake states using large-scale microelectrode recordings (up to 56 channels), with single-cell and spike-time precision, in epilepsy patients. We report that low (40-80 Hz) and high (80-120 Hz) gamma oscillations recurrently emerged over time windows of several hundreds of milliseconds in all investigated cortical areas during slow-wave sleep. These patterns were correlated with positive peaks of EEG slow oscillations and marked increases in local cellular discharges, suggesting that they were associated with cortical UP states. These gamma oscillations frequently appeared at approximately the same time in many different cortical areas, including homotopic regions, forming large spatial patterns. Coincident firings with millisecond precision were strongly enhanced during gamma oscillations but only between cells within the same cortical area. Furthermore, in a significant number of cases, cortical gamma oscillations tended to occur within 100 ms after hippocampal ripple/sharp wave complexes. These data confirm and extend earlier animal studies reporting that gamma oscillations are transiently expressed during UP states during sleep. We speculate that these high-frequency patterns briefly restore "microwake" activity and are important for consolidation of memory traces acquired during previous awake periods.


Assuntos
Córtex Cerebral/fisiopatologia , Eletroencefalografia , Epilepsia/fisiopatologia , Potenciais Evocados , Polissonografia/métodos , Sono , Adulto , Mapeamento Encefálico/métodos , Eletrodos Implantados , Feminino , Hipocampo/fisiopatologia , Humanos , Masculino , Microeletrodos
18.
Brain ; 133(Pt 1): 33-45, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19920064

RESUMO

Interictal high-frequency oscillations over 200 Hz have been recorded with microelectrodes in the seizure onset zone of epileptic patients suffering from mesial temporal lobe epilepsy. Recent work suggests that similar high-frequency oscillations can be detected in the seizure onset zone using standard diagnostic macroelectrodes. However, only a few channels were examined in these studies, so little information is available on the spatial extent of high-frequency oscillations. Here, we present data on high-frequency oscillations recorded from a larger number of intracerebral contacts spatial (mean 38) in 16 patients. Data were obtained from 1 h of interictal recording sampled at 1024 Hz and was analysed using a new semi-automatic detection procedure based on a wavelet decomposition. A detailed frequency analysis permitted a rapid and reliable discrimination of high-frequency oscillations from other high-frequency events. A total of 1932 high-frequency oscillations were detected with an average frequency of 261 +/- 53 Hz, amplitude of 11.9 +/- 6.7 microV and duration of 22.7 +/- 11.6 ms. Records from a patient often showed several different high-frequency oscillation patterns. We classified 24 patterns from 11 patients. Usually (20/24 patterns) high-frequency oscillations were nested in an epileptic paroxysm, such as a spike or a sharp wave, and typically high-frequency oscillations (19/24) were recorded from just one recording contact. Unexpectedly in other cases, high-frequency oscillations (5/24) were detected simultaneously on two or three contacts, sometimes separated by large distances. This large spatial extent suggests that high-frequency oscillations may sometimes result from a neuronal synchrony manifest on a scale of centimetres. High-frequency oscillations were almost always recorded in seizure-generating structures of patients suffering from mesial (9/9) or polar (1/3) temporal lobe epilepsy. They were never found in the epileptic or healthy basal, lateral temporal or extra temporal neocortex nor in the healthy amygdalo-hippocampal complex. These findings confirm that the generation of oscillations at frequencies higher that 200 Hz is, at this scale, a specific, intrinsic property of seizure-generating networks in medial and polar temporal lobes, which have a common archaic phylogenetic origin. We show that this activity can be detected and its spatial extent determined with conventional intracranial electroencephalography electrodes in records from patients with temporal lobe epilepsy. It is a reliable marker of the seizure onset zone that should be considered in decisions on surgical treatment.


Assuntos
Mapeamento Encefálico/instrumentação , Encéfalo/fisiopatologia , Eletroencefalografia/instrumentação , Epilepsia/fisiopatologia , Adulto , Relógios Biológicos/fisiologia , Mapeamento Encefálico/métodos , Eletrodos Implantados , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
Sci Rep ; 11(1): 4128, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602954

RESUMO

Clinical diagnosis of epilepsy depends heavily on the detection of interictal epileptiform discharges (IEDs) from scalp electroencephalographic (EEG) signals, which by purely visual means is far from straightforward. Here, we introduce a simple signal analysis procedure based on scalp EEG zero-crossing patterns which can extract the spatiotemporal structure of scalp voltage fluctuations. We analyzed simultaneous scalp and intracranial EEG recordings from patients with pharmacoresistant temporal lobe epilepsy. Our data show that a large proportion of intracranial IEDs manifest only as subtle, low-amplitude waveforms below scalp EEG background and could, therefore, not be detected visually. We found that scalp zero-crossing patterns allow detection of these intracranial IEDs on a single-trial level with millisecond temporal precision and including some mesial temporal discharges that do not propagate to the neocortex. Applied to an independent dataset, our method discriminated accurately between patients with epilepsy and normal subjects, confirming its practical applicability.


Assuntos
Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/fisiopatologia , Adolescente , Adulto , Criança , Eletrocorticografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Neurosci Res ; 156: 271-278, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32201357

RESUMO

Oscillations of neural excitability shape sensory, motor or cognitive processes. Furthermore, a large body of research demonstrates that intrinsic oscillations are entrained by external rhythms, allowing a simple and efficient way to enhance human brain functions. As an external stimulation source, repeating acoustic stimuli have been shown to provide a possible pacing signal for modulating the electrical activity recorded by the electroencephalogram (EEG). In this review, we discuss recent advances in understanding how rhythmic auditory stimulation can selectively modulate EEG oscillations. Despite growing evidence, recent evidence suggests that standard methods of data analysis are often insufficient for a definite proof of entrainment in some instances. In particular, we stressed that the complexity of the elicited modulations, often varying in phase and frequency on a short timescale, requires time-frequency measures that are better appropriate to analyze driven brain phenomena. Once entrainment is clearly established, one can assess the specificity of its expression, thus providing a better understanding of the physiology underlying brain modulation and a faster translation to treatment programs in various psychopathologic conditions.


Assuntos
Encéfalo , Eletroencefalografia , Estimulação Acústica , Percepção Auditiva , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA