Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 611(7937): 794-800, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36323785

RESUMO

Protective immunity relies on the interplay of innate and adaptive immune cells with complementary and redundant functions. Innate lymphoid cells (ILCs) have recently emerged as tissue-resident, innate mirror images of the T cell system, with which they share lineage-specifying transcription factors and effector machinery1. Located at barrier surfaces, ILCs are among the first responders against invading pathogens and thus could potentially determine the outcome of the immune response2. However, so far it has not been possible to dissect the unique contributions of ILCs to protective immunity owing to limitations in specific targeting of ILC subsets. Thus, all of the available data have been generated either in mice lacking the adaptive immune system or with tools that also affect other immune cell subsets. In addition, it has been proposed that ILCs might be dispensable for a proper immune response because other immune cells could compensate for their absence3-7. Here we report the generation of a mouse model based on the neuromedin U receptor 1 (Nmur1) promoter as a driver for simultaneous expression of Cre recombinase and green fluorescent protein, which enables gene targeting in group 2 ILCs (ILC2s) without affecting other innate and adaptive immune cells. Using Cre-mediated gene deletion of Id2 and Gata3 in Nmur1-expressing cells, we generated mice with a selective and specific deficiency in ILC2s. ILC2-deficient mice have decreased eosinophil counts at steady state and are unable to recruit eosinophils to the airways in models of allergic asthma. Further, ILC2-deficient mice do not mount an appropriate immune and epithelial type 2 response, resulting in a profound defect in worm expulsion and a non-protective type 3 immune response. In total, our data establish non-redundant functions for ILC2s in the presence of adaptive immune cells at steady state and during disease and argue for a multilayered organization of the immune system on the basis of a spatiotemporal division of labour.


Assuntos
Sistema Imunitário , Imunidade Inata , Linfócitos , Animais , Camundongos , Asma/genética , Asma/imunologia , Asma/patologia , Modelos Animais de Doenças , Eosinófilos/patologia , Imunidade Inata/imunologia , Linfócitos/classificação , Linfócitos/imunologia , Proteínas de Fluorescência Verde , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/patologia
2.
Front Immunol ; 14: 1130933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063913

RESUMO

The initiation of type 2 immune responses at mucosal barriers is regulated by rapidly secreted cytokines called alarmins. The alarmins IL-33, IL-25 and TSLP are mainly secreted by stromal and epithelial cells in tissues and were linked to chronic inflammatory diseases, such as allergic lung inflammation, or to resistance against worm infections. Receptors for alarmins are expressed by a variety of immune cells, including group 2 innate lymphoid cells (ILC2s), an early source of the type 2 cytokines, such as IL-5 and IL-13, which have been linked to atopic diseases and anti-worm immunity as well. However, the precise contribution of the IL-33 receptor signals for ILC2 activation still needs to be completed due to limitations in targeting genes in ILC2. Using the newly established Nmur1 iCre-eGFP mouse model, we obtained specific conditional genetic ablation of the IL-33 receptor subunit ST2 in ILC2s. ST2-deficient ILC2s were unresponsive to IL-33 but not to stimulation with the alarmin IL-25. As a result of defective ST2 signals, ILC2s produced limited amounts of IL-5 and IL-13 and failed to support eosinophil homeostasis. Further, ST2-deficient ILC2s were unable to expand and promote the recruitment of eosinophils during allergic lung inflammation provoked by papain administration. During infection with Nippostrongylus brasiliensis, ILC2-intrinsic ST2 signals were required to mount an effective type 2 immune response against the parasite leading to higher susceptibility against worm infection in conditional knockout mice. Therefore, this study argues for a non-redundant role of cell-intrinsic ST2 signals triggering proper activation of ILC2 for initiation of type 2 immunity.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1 , Eosinofilia Pulmonar , Infecções por Strongylida , Animais , Camundongos , Alarminas , Citocinas/imunologia , Imunidade Inata , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Interleucina-13 , Interleucina-33 , Interleucina-5 , Linfócitos , Eosinofilia Pulmonar/imunologia , Nippostrongylus , Infecções por Strongylida/imunologia
3.
Front Endocrinol (Lausanne) ; 11: 597648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384662

RESUMO

Non-Alcoholic Steatohepatitis (NASH) is the progressive form of Non-Alcoholic Fatty Liver Disease (NAFLD), the main cause of chronic liver complications. The development of NASH is the consequence of aberrant activation of hepatic conventional immune, parenchymal, and endothelial cells in response to inflammatory mediators from the liver, adipose tissue, and gut. Hepatocytes, Kupffer cells and liver sinusoidal endothelial cells contribute to the significant accumulation of bone-marrow derived-macrophages and neutrophils in the liver, a hallmark of NASH. The aberrant activation of these immune cells elicits harmful inflammation and liver injury, leading to NASH progression. In this review, we highlight the processes triggering the recruitment and/or activation of hepatic innate immune cells, with a focus on macrophages, neutrophils, and innate lymphoid cells as well as the contribution of hepatocytes and endothelial cells in driving liver inflammation/fibrosis. On-going studies and preliminary results from global and specific therapeutic strategies to manage this NASH-related inflammation will also be discussed.


Assuntos
Imunidade Inata/imunologia , Mediadores da Inflamação/metabolismo , Inflamação/complicações , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia
4.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165705, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32001301

RESUMO

The proteolytic cleavage of Fibronectin type III domain-containing 5 (FNDC5) generates soluble irisin. Initially described as being mainly produced in muscle during physical exercise, irisin mediates adipose tissue thermogenesis and also regulates carbohydrate and lipid metabolism. The aim of this study was to evaluate the hepatic expression of FNDC5 and its role in hepatocytes in Non-Alcoholic Fatty Liver (NAFL). Here we report that hepatic expression of FNDC5 increased with hepatic steatosis and liver injury without impacting the systemic level of irisin in mouse models of NAFLD (HFD and MCDD) and in obese patients. The increased Fndc5 expression in fatty liver resulted from its upregulation in hepatocytes and non-parenchymal cells in mice. The local production of Fndc5 in hepatocytes was influenced by genotoxic stress and p53-dependent pathways. The down-regulation of FNDC5 in human HepG2 cells and in primary mouse hepatocytes increased the expression of PEPCK, a key enzyme involved in gluconeogenesis associated with a decrease in the expression of master genes involved in the VLDL synthesis (CIDEB and APOB). These alterations in FNDC5-silenced cells resulted to increased steatosis and insulin resistance in response to oleic acid and N-acetyl glucosamine, respectively. The downregulation of Fndc5 also sensitized primary hepatocytes to apoptosis in response to TNFα, which has been associated with decreased hepatoprotective autophagic flux. In conclusion, our human and experimental data strongly suggest that the hepatic expression of FNDC5 increased with hepatic steatosis and its upregulation in hepatocytes could dampen the development of NAFLD by negatively regulating steatogenesis and hepatocyte death.


Assuntos
Fibronectinas/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade Mórbida/complicações , Adulto , Apoptose , Cirurgia Bariátrica , Biópsia , Dieta Hiperlipídica/efeitos adversos , Feminino , Fibronectinas/sangue , Fibronectinas/genética , Perfilação da Expressão Gênica , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Resistência à Insulina , Lipogênese , Fígado/citologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade Mórbida/sangue , Obesidade Mórbida/patologia , Obesidade Mórbida/cirurgia , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Cultura Primária de Células , Fatores de Proteção , Regulação para Cima
5.
Sci Rep ; 10(1): 12139, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699233

RESUMO

A large number of hepatic functions are regulated by the circadian clock and recent evidence suggests that clock disruption could be a risk factor for liver complications. The circadian transcription factor Krüppel like factor 10 (KLF10) has been involved in liver metabolism as well as cellular inflammatory and death pathways. Here, we show that hepatic steatosis and inflammation display diurnal rhythmicity in mice developing steatohepatitis upon feeding with a methionine and choline deficient diet (MCDD). Core clock gene mRNA oscillations remained mostly unaffected but rhythmic Klf10 expression was abolished in this model. We further show that Klf10 deficient mice display enhanced liver injury and fibrosis priming upon MCDD challenge. Silencing Klf10 also sensitized primary hepatocytes to apoptosis along with increased caspase 3 activation in response to TNFα. This data suggests that MCDD induced steatohepatitis barely affects the core clock mechanism but leads to a reprogramming of circadian gene expression in the liver in analogy to what is observed in other experimental disease paradigms. We further identify KLF10 as a component of this transcriptional reprogramming and a novel hepato-protective factor.


Assuntos
Biomarcadores/metabolismo , Ritmo Circadiano/genética , Dieta , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Fatores de Transcrição Kruppel-Like/genética , Hepatopatia Gordurosa não Alcoólica/etiologia , Animais , Apoptose , Caspase 3/metabolismo , Células Cultivadas , Colina/química , Dieta/veterinária , Modelos Animais de Doenças , Fatores de Transcrição de Resposta de Crescimento Precoce/deficiência , Fibrose , Hepatócitos/citologia , Hepatócitos/metabolismo , Fatores de Transcrição Kruppel-Like/deficiência , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Masculino , Metionina/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/patologia , Fator de Necrose Tumoral alfa/metabolismo
6.
Sci Rep ; 9(1): 7501, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097771

RESUMO

Improved understanding of the molecular mechanisms responsible for the progression from a "non-pathogenic" steatotic state to Non-Alcoholic Steatohepatitis is an important clinical requirement. The cell death-inducing DFF45 like effector (CIDE) family members (A, B and FSP27) regulate hepatic lipid homeostasis by controlling lipid droplet growth and/or VLDL production. However, CIDE proteins, particularly FSP27, have a dual role in that they also regulate cell death. We here report that the hepatic expression of CIDEA and FSP27 (α/ß) was similarly upregulated in a dietary mouse model of obesity-mediated hepatic steatosis. In contrast, CIDEA expression decreased, but FSP27-ß expression strongly increased in a dietary mouse model of steatohepatitis. The inverse expression pattern of CIDEA and FSP27ß was amplified with the increasing severity of the liver inflammation and injury. In obese patients, the hepatic CIDEC2 (human homologue of mouse FSP27ß) expression strongly correlated with the NAFLD activity score and liver injury. The hepatic expression of CIDEA tended to increase with obesity, but decreased with NAFLD severity. In hepatic cell lines, the downregulation of FSP27ß resulted in the fractionation of lipid droplets, whereas its overexpression decreased the expression of the anti-apoptotic BCL2 marker. This, in turn, sensitized cells to apoptosis in response to TNF α and saturated fatty acid. Considered together, our animal, human and in vitro studies indicate that differential expression of FSP27ß/CIDEC2 and CIDEA is related to NAFLD progression and liver injury.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adulto , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Progressão da Doença , Feminino , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA