Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunology ; 169(1): 27-41, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36371679

RESUMO

Although the baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) infects lepidopteran invertebrates as natural hosts, represents an efficient vector for vaccine development. Baculovirus surface display induces strong humoral responses against viruses and parasites. A novel strategy based on capsid display carrying foreign antigens in the AcMNPV particle further improved the immune response by eliciting CD8+ T cell activation. In this study, we analyze the intracellular mechanisms and signalling pathways involved in CD8+ T cell activation by capsid display. Our results show that baculovirus can attach to the cell surface, enter dendritic cells (DCs), transit within endocytic vesicles and escape to the cytosol for further degradation by the proteasome. We found that the availability of viral proteins, endosomal acidification, and proteasome activity are needed for efficient Major Histocompatibility Complex class-I presentation by baculovirus carrying Ovalbumin in the viral capsid. Importantly, we demonstrated with this strategy that the induction of cytotoxic T cells and IL-12 production by DCs are TLR9-dependent and STING-independent. Finally, our study shows differential intracellular processing for capsid and surface baculovirus proteins in DCs and highlights the role of different danger receptors during cytotoxic T cell priming through the capsid display delivery system, which could lead to improved baculovirus-based vaccines development.


Assuntos
Antineoplásicos , Baculoviridae , Baculoviridae/genética , Baculoviridae/metabolismo , Capsídeo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas do Capsídeo/genética
2.
Cancer Immunol Immunother ; 69(5): 703-716, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32034426

RESUMO

Cancer is one of the main causes of mortality worldwide and a major public health concern. Among various strategies, therapeutic vaccines have been developed to stimulate anti-tumoral immune responses. However, in spite of extensive studies, this approach suffers from a lack of efficacy. Recently, we designed the MAG-Tn3 vaccine, aiming to induce antibody responses against Tn, a tumor-associated carbohydrate antigen. The Tn antigen is of interest because it is expressed by several adenocarcinomas, but not normal cells. The fully synthetic glycopeptide vaccine MAG-Tn3 is composed of four arms built on three adjacent Tn moieties associated with the tetanus toxin-derived peptide TT830-844 CD4+ T-cell epitope. This promiscuous CD4+ T-cell epitope can bind to a wide range of HLA-DRB molecules and is thus expected to activate CD4+ T-cell responses in a large part of the human population. The MAG-Tn3 vaccine was formulated with the GSK-proprietary immunostimulant AS15, composed of CpG7909, MPL, and QS21, which has been shown to stimulate both innate and humoral responses, in addition to being well tolerated. Here, seven patients with localized breast cancer with a high-risk of relapse were immunized with the MAG-Tn3 vaccine formulated with AS15. The first results of phase I clinical trial demonstrated that all vaccinated patients developed high levels of Tn-specific antibodies. Moreover, these antibodies specifically recognized Tn-expressing human tumor cells and killed them through a complement-dependent cytotoxicity mechanism. Overall, this study establishes, for the first time, the capacity of a fully synthetic glycopeptide cancer vaccine to induce specific immune responses in humans.


Assuntos
Anticorpos Antineoplásicos/sangue , Antígenos Glicosídicos Associados a Tumores/imunologia , Neoplasias da Mama/terapia , Vacinas Anticâncer/imunologia , Recidiva Local de Neoplasia/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Adulto , Idoso , Animais , Anticorpos Antineoplásicos/imunologia , Antígenos Glicosídicos Associados a Tumores/administração & dosagem , Antígenos Glicosídicos Associados a Tumores/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Feminino , Glicopeptídeos/administração & dosagem , Glicopeptídeos/genética , Glicopeptídeos/imunologia , Humanos , Imunogenicidade da Vacina , Injeções Intramusculares , Células Jurkat , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/imunologia , Resultado do Tratamento , Vacinação/métodos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
3.
PLoS Pathog ; 12(7): e1005770, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27467705

RESUMO

Mycobacterium tuberculosis (Mtb), possesses at least three type VII secretion systems, ESX-1, -3 and -5 that are actively involved in pathogenesis and host-pathogen interaction. We recently showed that an attenuated Mtb vaccine candidate (Mtb Δppe25-pe19), which lacks the characteristic ESX-5-associated pe/ppe genes, but harbors all other components of the ESX-5 system, induces CD4+ T-cell immune responses against non-esx-5-associated PE/PPE protein homologs. These T cells strongly cross-recognize the missing esx-5-associated PE/PPE proteins. Here, we characterized the fine composition of the functional cross-reactive Th1 effector subsets specific to the shared PE/PPE epitopes in mice immunized with the Mtb Δppe25-pe19 vaccine candidate. We provide evidence that the Mtb Δppe25-pe19 strain, despite its significant attenuation, is comparable to the WT Mtb strain with regard to: (i) its antigenic repertoire related to the different ESX systems, (ii) the induced Th1 effector subset composition, (iii) the differentiation status of the Th1 cells induced, and (iv) its particular features at stimulating the innate immune response. Indeed, we found significant contribution of PE/PPE-specific Th1 effector cells in the protective immunity against pulmonary Mtb infection. These results offer detailed insights into the immune mechanisms underlying the remarkable protective efficacy of the live attenuated Mtb Δppe25-pe19 vaccine candidate, as well as the specific potential of PE/PPE proteins as protective immunogens.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Reações Cruzadas , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Células Th1
4.
Immunity ; 31(5): 761-71, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19913447

RESUMO

Neutrophils are one of the first lines of defense against microbial pathogens and are rapidly recruited at the infection site upon inflammatory conditions. We show here that after bacterial stimulation, and in contrast to monocytes and macrophages, murine neutrophils contributed poorly to inflammatory responses; however, they secreted high amounts of the anti-inflammatory cytokine IL-10 in a DAP12 adaptor-Syk kinase and MyD88 adaptor-dependent manner. Cotriggering of TLR-MyD88- and C-type lectin receptor (CLR)-Syk-dependent pathways led to a quick and sustained phosphorylation of p38 MAP and Akt kinases in neutrophils. In vivo, both Gram-negative bacteria and mycobacteria induced the recruitment of neutrophils secreting IL-10. In acute mycobacterial infection, neutrophil-derived IL-10 controlled the inflammatory response of dendritic cells, monocytes and macrophages in the lung. During a chronic infection, neutrophil depletion promoted inflammation and decreased the mycobacterial burden. Therefore, neutrophils can have a previously unsuspected regulatory role during acute and chronic microbial infections.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/imunologia , Proteínas Tirosina Quinases/metabolismo , Animais , Interleucina-10/metabolismo , Camundongos , Mycobacterium bovis/imunologia , Transdução de Sinais , Quinase Syk , Receptor 2 Toll-Like/metabolismo , Tuberculose/imunologia
5.
Int J Cancer ; 139(6): 1358-71, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27130719

RESUMO

Enhancing anti-tumor immunity and preventing tumor escape are efficient strategies to increase the efficacy of therapeutic cancer vaccines. However, the treatment of advanced tumors remains difficult, mainly due to the immunosuppressive tumor microenvironment. Regulatory T cells and myeloid-derived suppressor cells have been extensively studied, and their role in suppressing tumor immunity is now well established. In contrast, the role of B lymphocytes in tumor immunity remains unclear because B cells can promote tumor immunity or display regulatory functions to control excessive inflammation, mainly through IL-10 secretion. Here, in a mouse model of HPV-related cancer, we demonstrate that B cells accumulated in the draining lymph node of tumor-bearing mice, due to a prolonged survival, and showed a decreased expression of MHC class II and CD86 molecules and an increased expression of Ly6A/E, PD-L1 and CD39, suggesting potential immunoregulatory properties. However, B cells from tumor-bearing mice did not show an increased ability to secrete IL-10 and a deficiency in IL-10 production did not impair tumor growth. In contrast, in B cell-deficient µMT mice, tumor rejection occurred due to a strong T cell-dependent anti-tumor response. Genetic analysis based on single nucleotide polymorphisms identified genetic variants associated with tumor rejection in µMT mice, which could potentially affect reactive oxygen species production and NK cell activity. Our results demonstrate that B cells play a detrimental role in anti-tumor immunity and suggest that targeting B cells could enhance the anti-tumor response and improve the efficacy of therapeutic cancer vaccines.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Infecções por Papillomavirus/complicações , Neoplasias do Colo do Útero/etiologia , Neoplasias do Colo do Útero/metabolismo , Animais , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/patologia , Linfócitos B/patologia , Movimento Celular/imunologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Estudo de Associação Genômica Ampla , Interleucina-10/biossíntese , Linfonodos/imunologia , Linfonodos/patologia , Ativação Linfocitária , Camundongos , Papillomaviridae , Infecções por Papillomavirus/virologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Receptor Toll-Like 9/metabolismo , Neoplasias do Colo do Útero/patologia
6.
Cancer Immunol Immunother ; 65(3): 315-25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26847142

RESUMO

Malignant transformations are often associated with aberrant glycosylation processes that lead to the expression of new carbohydrate antigens at the surface of tumor cells. Of these carbohydrate antigens, the Tn antigen is particularly highly expressed in many carcinomas, especially in breast carcinoma. We designed MAG-Tn3, a fully synthetic vaccine based on three consecutive Tn moieties that are O-linked to a CD4+ T cell epitope, to induce anti-Tn antibody responses that could be helpful for therapeutic vaccination against cancer. To ensure broad coverage within the human population, the tetanus toxoid-derived peptide TT830-844 was selected as a T-helper epitope because it can bind to various HLA-DRB molecules. We showed that the MAG-Tn3 vaccine, which was formulated with the GSK proprietary immunostimulant AS15 and designed for human cancer therapy, is able to induce an anti-Tn antibody response in mice of various H-2 haplotypes, and this response correlates with the ability to induce a specific T cell response against the TT830-844 peptide. The universality of the TT830-844 peptide was extended to new H-2 and HLA-DRB molecules that were capable of binding this T cell epitope. Finally, the MAG-Tn3 vaccine was able to induce anti-Tn antibody responses in cynomolgus monkeys, which targeted Tn-expressing tumor cells and mediated tumor cell death both in vitro and in vivo. Thus, MAG-Tn3 is a highly promising anticancer vaccine that is currently under evaluation in a phase I clinical trial.


Assuntos
Antígenos Glicosídicos Associados a Tumores/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer/imunologia , Epitopos de Linfócito T/imunologia , Glicoproteína Associada a Mielina/imunologia , Fragmentos de Peptídeos/imunologia , Toxoide Tetânico/imunologia , Sequência de Aminoácidos , Animais , Feminino , Antígenos H-2/genética , Cadeias HLA-DRB1/imunologia , Haplótipos , Humanos , Macaca fascicularis , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Vacinação , Vacinas Sintéticas/imunologia
7.
Org Biomol Chem ; 15(1): 114-123, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27812586

RESUMO

Herein, we report a new process that enables the gram-scale production of a fully synthetic anti-cancer vaccine for human use. This therapeutic vaccine candidate, named MAG-Tn3, is a high-molecular-weight tetrameric glycopeptide encompassing carbohydrate tumor-associated Tn antigen clusters and peptidic CD4+ T-cell epitopes. The synthetic process involves (i) the stepwise solid-phase assembly of protected amino acids, including the high value-added Tn building blocks with only 1.5 equivalents, (ii) a single isolated intermediate, and (iii) the simultaneous deprotection of 36 hindered protective groups. The resulting MAG-Tn3 was unambiguously characterized using a combination of techniques, including a structural analysis by nuclear magnetic resonance spectroscopy. The four peptidic chains are flexible in solution, with a more constrained but extended conformation at the Tn3 antigen motif. Finally, we demonstrate that, when injected into HLA-DR1-expressing transgenic mice, this vaccine induces Tn-specific antibodies that mediate the killing of human Tn-positive tumor cells. These studies led to a clinical batch of the MAG-Tn3, currently investigated in breast cancer patients (phase I clinical trial). The current study demonstrates the feasibility of the multigram-scale synthesis of a highly pure complex glycopeptide, and it opens new avenues for the use of synthetic glycopeptides as drugs in humans.


Assuntos
Vacinas Anticâncer/química , Dendrímeros/química , Glicopeptídeos/química , Neoplasias/prevenção & controle , Vacinas Sintéticas/química , Sequência de Aminoácidos , Animais , Antígenos Glicosídicos Associados a Tumores/química , Antígenos Glicosídicos Associados a Tumores/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer/síntese química , Vacinas Anticâncer/uso terapêutico , Dendrímeros/síntese química , Dendrímeros/uso terapêutico , Glicopeptídeos/síntese química , Glicopeptídeos/uso terapêutico , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias/imunologia , Vacinas Sintéticas/uso terapêutico
8.
J Immunol ; 193(4): 1787-98, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25024388

RESUMO

Deciphering the mechanisms that allow the induction of strong immune responses is crucial to developing efficient vaccines against infectious diseases and cancer. Based on the discovery that the adenylate cyclase from Bordetella pertussis binds to the CD11b/CD18 integrin, we developed a highly efficient detoxified adenylate cyclase-based vector (CyaA) capable of delivering a large variety of Ags to the APC. This vector allows the induction of protective and therapeutic immunity against viral and tumoral challenges as well as against transplanted tumors in the absence of any added adjuvant. Two therapeutic vaccine candidates against human papilloma viruses and melanoma have been developed recently, based on the CyaA vector, and are currently in clinical trials. We took advantage of one of these highly purified vaccines, produced under good manufacturing practice-like conditions, to decipher the mechanisms by which CyaA induces immune responses. In this study, we demonstrate that CyaA binds both human and mouse CD11b(+) dendritic cells (DCs) and induces their maturation, as shown by the upregulation of costimulatory and MHC molecules and the production of proinflammatory cytokines. Importantly, we show that DCs sense CyaA through the TLR4/Toll/IL-1R domain-containing adapter-inducing IFN-ß pathway, independent of the presence of LPS. These findings show that CyaA possesses the intrinsic ability to not only target DCs but also to activate them, leading to the induction of strong immune responses. Overall, this study demonstrates that Ag delivery to CD11b(+) DCs in association with TLR4/Toll/IL-1R domain-containing adapter-inducing IFN-ß activation is an efficient strategy to promote strong specific CD8(+) T cell responses.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Toxina Adenilato Ciclase/imunologia , Antígeno CD11b/imunologia , Células Dendríticas/imunologia , Animais , Antígeno B7-1/biossíntese , Antígeno B7-2/biossíntese , Bordetella pertussis/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/citologia , Feminino , Interferon beta/imunologia , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Receptores de Interleucina-1/imunologia , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Tirosina/genética
9.
J Immunol ; 193(3): 1151-61, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24973449

RESUMO

Plasmacytoid dendritic cells (pDCs) are considered to be the principal type-I IFN (IFN-I) source in response to viruses, whereas the contribution of conventional DCs (cDCs) has been underestimated because, on a per-cell basis, they are not considered professional IFN-I-producing cells. We have investigated their respective roles in the IFN-I response required for CTL activation. Using a nonreplicative virus, baculovirus, we show that despite the high IFN-I-producing abilities of pDCs, in vivo cDCs but not pDCs are the pivotal IFN-I producers upon viral injection, as demonstrated by selective pDC or cDC depletion. The pathway involved in the virus-triggered IFN-I response is dependent on TLR9/MyD88 in pDCs and on stimulator of IFN genes (STING) in cDCs. Importantly, STING is the key molecule for the systemic baculovirus-induced IFN-I response required for CTL priming. The supremacy of cDCs over pDCs in fostering the IFN-I response required for CTL activation was also verified in the lymphocytic choriomeningitis virus model, in which IFN-ß promoter stimulator 1 plays the role of STING. However, when the TLR-independent virus-triggered IFN-I production is impaired, the pDC-induced IFNs-I have a primary impact on CTL activation, as shown by the detrimental effect of pDC depletion and IFN-I signaling blockade on the residual lymphocytic choriomeningitis virus-triggered CTL response detected in IFN-ß promoter stimulator 1(-/-) mice. Our findings reveal that cDCs play a major role in the TLR-independent virus-triggered IFN-I production required for CTL priming, whereas pDC-induced IFNs-I are dispensable but become relevant when the TLR-independent IFN-I response is impaired.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Citotoxicidade Imunológica , Células Dendríticas/imunologia , Células Dendríticas/virologia , Interferon Tipo I/biossíntese , Nucleopoliedrovírus/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/classificação , Feminino , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/fisiologia , Transdução de Sinais/imunologia , Receptor Toll-Like 9/fisiologia
10.
J Allergy Clin Immunol ; 136(5): 1355-68.e1-15, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25865351

RESUMO

BACKGROUND: Early life is characterized by a high susceptibility to infection and a TH2-biased CD4 T-cell response to vaccines. Toll-like receptor (TLR) agonists are currently being implemented as new vaccine adjuvants for TH1 activation, but their translation to the field of pediatric vaccines is facing the impairment of neonatal innate TLR responses. OBJECTIVE: We sought to analyze C-type lectin receptor pathways as an alternative or a coactivator to TLRs for neonatal dendritic cell activation for TH1 polarization. METHODS: Neonatal monocyte-derived dendritic cells (moDCs) were exposed to various combinations of TLR agonists with or without Dectin-1 agonist. IL-12 and IL-23 responses were analyzed at the transcriptional and protein levels after stimulation. The intracellular pathways triggered by combined TLR plus Dectin-1 stimulation was determined by using pharmacologic inhibitors. The capacity of neonatal moDCs to differentiate naive CD4 TH cells was evaluated in cocultures with heterologous neonatal naive T cells. Curdlan was finally tested as an adjuvant within a subunit tuberculosis vaccine in neonatal mice. RESULTS: Simultaneous coactivation through Dectin-1 and TLRs induced robust secretion of IL-12p70 by neonatal moDCs by unlocking transcriptional control on the p35 subunit of IL-12. Both the spleen tyrosine kinase and Raf-1 pathways were involved in this process, allowing differentiation of neonatal naive T cells toward IFN-γ-producing TH1 cells. In vivo a Dectin-1 agonist as adjuvant was sufficient to induce TH1 responses after vaccination of neonatal mice. CONCLUSION: Coactivation of neonatal moDCs through Dectin-1 allows TLR-mediated IL-12p70 secretion and TH1 polarization of neonatal T cells. Dectin-1 agonists represent a promising TH1 adjuvant for pediatric vaccination.


Assuntos
Células Dendríticas/imunologia , Lectinas Tipo C/agonistas , Células Th1/imunologia , Células Th2/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Humanos , Imunidade Inata , Interleucina-12/metabolismo , Subunidade p35 da Interleucina-12 , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Proteínas Proto-Oncogênicas c-raf/metabolismo , Vacinação
11.
J Am Chem Soc ; 137(39): 12438-41, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26366611

RESUMO

The identification of MUC1 tumor-associated Tn antigen (αGalpNAc1-O-Ser/Thr) has boosted the development of anticancer vaccines. Combining microarrays and saturation transfer difference NMR, we have characterized the fine-epitope mapping of a MUC1 chemical library (naked and Tn-glycosylated) toward two families of cancer-related monoclonal antibodies (anti-MUC1 and anti-Tn mAbs). Anti-MUC1 mAbs clone VU-3C6 and VU-11E2 recognize naked MUC1-derived peptides and bind GalNAc in a peptide-sequence-dependent manner. In contrast, anti-Tn mAbs clone 8D4 and 14D6 mostly recognize the GalNAc and do not bind naked MUC1-derived peptides. These anti-Tn mAbs show a clear preference for glycopeptides containing the Tn-Ser antigen rather than the Tn-Thr analogue, stressing the role of the underlying amino acid (serine or threonine) in the binding process. The reported strategy can be employed, in general, to unveil the key minimal structural features that modulate antigen-antibody recognition, with particular relevance for the development of Tn-MUC1-based anticancer vaccines.


Assuntos
Anticorpos Monoclonais/metabolismo , Vacinas Anticâncer , Epitopos/imunologia , Espectroscopia de Ressonância Magnética , Análise Serial de Proteínas , Mapeamento de Epitopos , Humanos
12.
J Infect Dis ; 210(3): 424-34, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24558121

RESUMO

BACKGROUND: The elicitation of T-helper type 1 (Th1) cellular immunity to eradicate intracellular pathogens is a challenging task because of the interleukin 12 (IL-12) deficit observed in early infancy. METHODS: Screening cord blood responses to various pediatric vaccines and Toll-like receptor (TLR) agonists for innate responses and CD4(+) T-cell differentiation. RESULTS: We identified that nonadjuvanted inactivated trivalent influenza vaccine (TIV) was able to cosignal T cells for the production of interferon γ (IFN-γ) in a neonatal setting. This process includes the mobilization of neonatal plasmacytoid dendritic cells (pDCs) as antigen-presenting cells (APCs) that efficiently engage Th1 cells in an IL-12-independent but type I IFN-dependent manner. In addition, cord blood pDCs efficiently cross-presented antigen to CD8(+) T cells. Importantly, activation by TIV mainly requires TLR7; however, R848/TLR7- and CpGB/TLR9-activated pDCs, which poorly produced IFN-α, induce neonatal Th2 responses. CONCLUSIONS: TLR pathway engagement in pDCs is necessary but not sufficient for a successful neonatal Th1 outcome. We provide evidence of a mature and functional neonatal immune system at the level of APCs and T cells and propose to implement the IFN-α/IFN-γ axis in pediatric vaccination as a surrogate for the defective IL-12/IFN-γ axis.


Assuntos
Células Dendríticas/fisiologia , Vacinas contra Influenza/imunologia , Linfócitos T Auxiliares-Indutores/classificação , Linfócitos T Auxiliares-Indutores/fisiologia , Envelhecimento , Sangue Fetal/citologia , Humanos , Esquemas de Imunização , Recém-Nascido , Interferon-alfa/genética , Interferon-alfa/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Transdução de Sinais , Células Th1/fisiologia , Vacinação
13.
PLoS Pathog ; 8(4): e1002580, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496638

RESUMO

Bordetella adenylate cyclase toxin-hemolysin (CyaA) penetrates the cytoplasmic membrane of phagocytes and employs two distinct conformers to exert its multiple activities. One conformer forms cation-selective pores that permeabilize phagocyte membrane for efflux of cytosolic potassium. The other conformer conducts extracellular calcium ions across cytoplasmic membrane of cells, relocates into lipid rafts, translocates the adenylate cyclase enzyme (AC) domain into cells and converts cytosolic ATP to cAMP. We show that the calcium-conducting activity of CyaA controls the path and kinetics of endocytic removal of toxin pores from phagocyte membrane. The enzymatically inactive but calcium-conducting CyaA-AC⁻ toxoid was endocytosed via a clathrin-dependent pathway. In contrast, a doubly mutated (E570K+E581P) toxoid, unable to conduct Ca²âº into cells, was rapidly internalized by membrane macropinocytosis, unless rescued by Ca²âº influx promoted in trans by ionomycin or intact toxoid. Moreover, a fully pore-forming CyaA-ΔAC hemolysin failed to permeabilize phagocytes, unless endocytic removal of its pores from cell membrane was decelerated through Ca²âº influx promoted by molecules locked in a Ca²âº-conducting conformation by the 3D1 antibody. Inhibition of endocytosis also enabled the native B. pertussis-produced CyaA to induce lysis of J774A.1 macrophages at concentrations starting from 100 ng/ml. Hence, by mediating calcium influx into cells, the translocating conformer of CyaA controls the removal of bystander toxin pores from phagocyte membrane. This triggers a positive feedback loop of exacerbated cell permeabilization, where the efflux of cellular potassium yields further decreased toxin pore removal from cell membrane and this further enhances cell permeabilization and potassium efflux.


Assuntos
Toxina Adenilato Ciclase/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Macrófagos/metabolismo , Microdomínios da Membrana/metabolismo , Potássio/metabolismo , Animais , Linhagem Celular , Clatrina/metabolismo , Endocitose/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Macrófagos/citologia , Camundongos
14.
Appl Environ Microbiol ; 80(18): 5854-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25038093

RESUMO

Outer membrane vesicles (OMVs) are spherical nanoparticles that naturally shed from Gram-negative bacteria. They are rich in immunostimulatory proteins and lipopolysaccharide but do not replicate, which increases their safety profile and renders them attractive vaccine vectors. By packaging foreign polypeptides in OMVs, specific immune responses can be raised toward heterologous antigens in the context of an intrinsic adjuvant. Antigens exposed at the vesicle surface have been suggested to elicit protection superior to that from antigens concealed inside OMVs, but hitherto robust methods for targeting heterologous proteins to the OMV surface have been lacking. We have exploited our previously developed hemoglobin protease (Hbp) autotransporter platform for display of heterologous polypeptides at the OMV surface. One, two, or three of the Mycobacterium tuberculosis antigens ESAT6, Ag85B, and Rv2660c were targeted to the surface of Escherichia coli OMVs upon fusion to Hbp. Furthermore, a hypervesiculating ΔtolR ΔtolA derivative of attenuated Salmonella enterica serovar Typhimurium SL3261 was generated, enabling efficient release and purification of OMVs decorated with multiple heterologous antigens, exemplified by the M. tuberculosis antigens and epitopes from Chlamydia trachomatis major outer membrane protein (MOMP). Also, we showed that delivery of Salmonella OMVs displaying Ag85B to antigen-presenting cells in vitro results in processing and presentation of an epitope that is functionally recognized by Ag85B-specific T cell hybridomas. In conclusion, the Hbp platform mediates efficient display of (multiple) heterologous antigens, individually or combined within one molecule, at the surface of OMVs. Detection of antigen-specific immune responses upon vesicle-mediated delivery demonstrated the potential of our system for vaccine development.


Assuntos
Antígenos de Bactérias/metabolismo , Endopeptidases/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Salmonella typhimurium/metabolismo , Vesículas Secretórias/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/genética , Escherichia coli/genética , Mycobacterium tuberculosis/genética , Transporte Proteico , Salmonella typhimurium/genética
15.
Blood ; 120(1): 90-9, 2012 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-22611152

RESUMO

The physiologic role played by plasmacytoid dendritic cells (pDCs) in the induction of innate responses and inflammation in response to pathogen signaling is not well understood. Here, we describe a new mouse model lacking pDCs and establish that pDCs are essential for the in vivo induction of NK-cell activity in response to Toll-like receptor 9 (TLR9) triggering. Furthermore, we provide the first evidence that pDCs are critical for the systemic production of a wide variety of chemokines in response to TLR9 activation. Consequently, we observed a profound alteration in monocyte, macrophage, neutrophil, and NK-cell recruitment at the site of inflammation in the absence of pDCs in response to CpG-Dotap and stimulation by microbial pathogens, such as Leishmania major, Escherichia coli, and Mycobacterium bovis. This study, which is based on the development of a constitutively pDC-deficient mouse model, highlights the pivotal role played by pDCs in the induction of innate immune responses and inflammation after TLR9 triggering.


Assuntos
Células Dendríticas/imunologia , Infecções/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/microbiologia , Receptor Toll-Like 9/imunologia , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Movimento Celular/imunologia , Quimiocinas/imunologia , Citocinas/imunologia , Proteínas de Ligação a DNA/genética , Células Dendríticas/citologia , Infecções por Escherichia coli/imunologia , Imunidade Inata/imunologia , Leishmania major/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/citologia , Monócitos/imunologia , Neutrófilos/citologia , Neutrófilos/imunologia , Transdução de Sinais/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Receptor Toll-Like 9/metabolismo , Tuberculose/imunologia
16.
J Exp Med ; 204(5): 1107-18, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-17485512

RESUMO

Newborns and infants are highly susceptible to viral and bacterial infections, but the underlying mechanism remains poorly understood. We show that neonatal B cells effectively control the production of proinflammatory cytokines by both neonatal plasmacytoid and conventional dendritic cells, in an interleukin (IL) 10-dependent manner, after Toll-like receptor (TLR) 9 triggering. This antiinflammatory property of neonatal B cells may extend to other TLR agonists (Pam3CSK4, lipopolysaccharide, and R848) and viruses. In the absence of B cells or of CD5(+) B cell subsets, neonatal mice developed stronger inflammatory responses and became lethally susceptible to CpG challenge after galactosamine sensitization, whereas wild-type (WT) mice were resistant. Paradoxically, interferon (IFN)-alpha/beta enhanced the inflammatory response to CpG challenge in adult mice, whereas they helped to control neonatal acute inflammation by stimulating the secretion of IL-10 by neonatal B cells. Finally, WT neonatal B cells rescued IL-10(-/-) neonates from a lethal CpG challenge, whereas IFN-alpha/beta receptor-deficient B cells did not. Our results show that type I IFNs support a negative regulatory role of neonatal B cells on TLR-mediated inflammation, with important implications for neonatal inflammation and infection.


Assuntos
Linfócitos B/imunologia , Inflamação/imunologia , Interferon Tipo I/imunologia , Interleucina-10/imunologia , Transferência Adotiva , Animais , Animais Recém-Nascidos , Linfócitos B/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Toll-Like 9/metabolismo
17.
Mol Microbiol ; 83(6): 1195-209, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22340629

RESUMO

The chromosome of Mycobacterium tuberculosis encodes five type VII secretion systems (ESX-1-ESX-5). While the role of the ESX-1 and ESX-3 systems in M. tuberculosis has been elucidated, predictions for the function of the ESX-5 system came from data obtained in Mycobacterium marinum, where it transports PPE and PE_PGRS proteins and modulates innate immune responses. To define the role of the ESX-5 system in M. tuberculosis, in this study, we have constructed five M. tuberculosis H37Rv ESX-5 knockout/deletion mutants, inactivating eccA(5), eccD(5), rv1794 and esxM genes or the ppe25-pe19 region. Whereas the Mtbrv1794ko displayed no obvious phenotype, the other four mutants showed defects in secretion of the ESX-5-encoded EsxN and PPE41, a representative member of the large PPE protein family. Strikingly, the MtbeccD(5) ko mutant also showed enhanced sensitivity to detergents and hydrophilic antibiotics. When the virulence of the five mutants was evaluated, the MtbeccD(5) ko and MtbΔppe25-pe19 mutants were found attenuated both in macrophages and in the severe combined immune-deficient mouse infection model. Altogether these findings indicate an essential role of ESX-5 for transport of PPE proteins, cell wall integrity and full virulence of M. tuberculosis, thereby opening interesting new perspectives for the study of this human pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Parede Celular/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Motivos de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Parede Celular/química , Parede Celular/genética , Células Cultivadas , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos SCID , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Transporte Proteico , Virulência
18.
Cancer Immunol Immunother ; 62(6): 1107-22, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23604173

RESUMO

The Tn antigen (GalNAcα-O-Ser/Thr) is a well-established tumor-associated marker which represents a good target for the design of anti-tumor vaccines. Several studies have established that the binding of some anti-Tn antibodies could be affected by the density of Tn determinant or/and by the amino acid residues neighboring O-glycosylation sites. In the present study, using synthetic Tn-based vaccines, we have generated a panel of anti-Tn monoclonal antibodies. Analysis of their binding to various synthetic glycopeptides, modifying the amino acid carrier of the GalNAc(*) (Ser* vs Thr*), showed subtle differences in their fine specificities. We found that the recognition of these glycopeptides by some of these MAbs was strongly affected by the Tn backbone, such as a S*S*S* specific MAb (15G9) which failed to recognize a S*T*T* or a T*T*T* structure. Different binding patterns of these antibodies were also observed in FACS and Western blot analysis using three human cancer cell lines (MCF-7, LS174T and Jurkat). Importantly, an immunohistochemical analysis of human tumors (72 breast cancer and 44 colon cancer) showed the existence of different recognition profiles among the five antibodies evaluated, demonstrating that the aglyconic part of the Tn structure (Ser vs Thr) plays a key role in the anti-Tn specificity for breast and colon cancer detection. This new structural feature of the Tn antigen could be of important clinical value, notably due to the increasing interest of this antigen in anticancer vaccine design as well as for the development of anti-Tn antibodies for in vivo diagnostic and therapeutic strategies.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos Glicosídicos Associados a Tumores/imunologia , Glicopeptídeos/imunologia , Neoplasias/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/metabolismo , Especificidade de Anticorpos/imunologia , Antígenos Glicosídicos Associados a Tumores/química , Antígenos Glicosídicos Associados a Tumores/metabolismo , Biomarcadores Tumorais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica/imunologia
19.
J Biol Chem ; 286(10): 7797-7811, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21193402

RESUMO

The Tn antigen (α-GalNAc-O-Ser/Thr) is one of the most specific human cancer-associated structures. This antigen, together with mucins, the major carriers of O-glycosylated tumor antigens in adenocarcinomas, are being evaluated as anti-cancer immunotherapeutic targets. In particular, the MUC6 protein, which is normally expressed only in gastric tissues, has been detected in intestinal, pulmonary, colorectal, and breast carcinomas. To develop anti-cancer vaccines based on the Tn antigen, we produced MUC6 proteins with different Tn density by using mixtures of recombinant ppGalNAc-T1, -T2, and -T7. The obtained glycoproteins were characterized and analyzed for their immunological properties, as compared with the non-glycosylated MUC6. We show that these various MUC6:Tn glycoproteins were well recognized by both MUC6 and Tn-specific antibodies. However, Tn glycosylation of the MUC6 protein strongly affected their immunogenicity by partially abrogating Th1 cell responses, and promoting IL-17 responses. Moreover, the non-glycosylated MUC6 was more efficiently presented than MUC6:Tn glycoproteins to specific T CD4(+) hybridomas, suggesting that Tn glycosylation may affect MUC6 processing or MHC binding of the processed peptides. In conclusion, our results indicate that Tn glycosylation of the MUC6 protein strongly affects its B and T cell immunogenicity, and might favor immune escape of tumor cells.


Assuntos
Anticorpos Antineoplásicos/imunologia , Vacinas Anticâncer/imunologia , Mucina-6/imunologia , Células Th17/imunologia , Evasão Tumoral/imunologia , Animais , Antígenos Glicosídicos Associados a Tumores , Vacinas Anticâncer/genética , Feminino , Glicosilação , Humanos , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mucina-6/genética , Células Th1/imunologia
20.
Int J Cancer ; 131(3): 641-51, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21898393

RESUMO

Cervical carcinoma is one of the most common cancers in women worldwide. It is well established that chronic infection of the genital tract by various mucosatropic human papillomavirus (HPV) types causes cervical cancer. Cellular immunity to E7 protein from HPV (HPVE7) has been associated with clinical and cytologic resolution of HPV-induced lesions. Thus, we decided to test if targeting of HPVE7 to dendritic cells using a fusion protein containing the extra domain A (EDA) from fibronectin, a natural ligand for TLR4, and HPVE7 (EDA-HPVE7) might be an efficient vaccine for the treatment of cervical carcinoma. We found that EDA-HPVE7 fusion protein was efficiently captured by bone marrow derived dendritic cells in vitro and induced their maturation, with the upregulation of maturation markers and the production of IL-12. Immunization of mice with EDA-HPVE7 fusion protein induced antitumor CD8(+) T cell responses in the absence of additional adjuvants. Repeated intratumoral administration of EDA-HPVE7 in saline was able to cure established TC-1 tumors of 5-7 mm in diameter. More importantly, intravenous injection with EDA-HPVE7 in combination with the TLR ligand polyinosinic-polycytidylic acid (pIC), or with low doses of cyclophosphamide and the TLR9 ligand CpG-B complexed in cationic lipids, were able to eradicate large established TC-1 tumors (1.2 cm in diameter). Thus, therapeutic vaccination with EDA-HPVE7 fusion protein may be effective in the treatment of human cervical carcinoma.


Assuntos
Vacinas Anticâncer/imunologia , Fibronectinas/imunologia , Proteínas E7 de Papillomavirus/imunologia , Vacinas contra Papillomavirus/imunologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/terapia , Adjuvantes Imunológicos , Animais , Células da Medula Óssea/imunologia , Linfócitos T CD8-Positivos/imunologia , Ciclofosfamida/farmacologia , Células Dendríticas/imunologia , Feminino , Fibronectinas/metabolismo , Células HEK293 , Humanos , Interleucina-12/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/farmacologia , Papillomaviridae/imunologia , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/imunologia , Poli I-C/farmacologia , Proteínas Recombinantes de Fusão/imunologia , Neoplasias do Colo do Útero/virologia , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA