Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(49): e2208900119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454758

RESUMO

Combining multiple therapeutic strategies in NRAS/BRAF mutant melanoma-namely MEK/BRAF kinase inhibitors, immune checkpoint inhibitors (ICIs), and targeted immunotherapies-may offer an improved survival benefit by overcoming limitations associated with any individual therapy. Still, optimal combination, order, and timing of administration remains under investigation. Here, we measure how MEK inhibition (MEKi) alters anti-tumor immunity by utilizing quantitative immunopeptidomics to profile changes in the peptide major histocompatibility molecules (pMHC) repertoire. These data reveal a collection of tumor antigens whose presentation levels are selectively augmented following therapy, including several epitopes present at over 1,000 copies per cell. We leveraged the tunable abundance of MEKi-modulated antigens by targeting four epitopes with pMHC-specific T cell engagers and antibody drug conjugates, enhancing cell killing in tumor cells following MEK inhibition. These results highlight drug treatment as a means to enhance immunotherapy efficacy by targeting specific upregulated pMHCs and provide a methodological framework for identifying, quantifying, and therapeutically targeting additional epitopes of interest.


Assuntos
Melanoma , Quinases de Proteína Quinase Ativadas por Mitógeno , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Antígenos de Neoplasias/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Epitopos
2.
J Chem Phys ; 149(22): 224105, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30553248

RESUMO

Recent developments in nonequilibrium statistical mechanics suggest that the history of entropy production in a system determines the relative likelihood of competing processes. This presents the possibility of interpreting and predicting the self-organization of complex active systems, but existing theories rely on quantities that are challenging to obtain. Here, we address this issue for a general class of Markovian systems in which two types of self-replicating molecular assemblies (self-replicators) compete for a pool of limiting resource molecules within a nonequilibrium steady state. We derive exact relations that show that the relative fitness of these species depends on a path function, ψ, which is a sum of the entropy production and a relative-entropy term. In the limit of infinite path length, ψ reduces to the entropy production. We demonstrate use of the theory by numerically studying two models inspired by biological systems, including a simplified model of a competition between strains of the yeast prion Sup35 in the presence of driven disaggregation by the ATPase Hsp104.

3.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39005324

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of infectious disease death and lacks a vaccine capable of protecting adults from pulmonary TB. Studies have shown that Mtb uses a variety of mechanisms to evade host immunity. Secreted Mtb proteins such as Type VII secretion system substrates have been characterized for their ability to modulate anti-Mtb immunity; however, studies of other pathogens such as Salmonella Typhi and Staphylococcus aureus have revealed that outer membrane proteins can also interact with the innate and adaptive immune system. The Mtb outer membrane proteome has received relatively less attention due to limited techniques available to interrogate this compartment. We filled this gap by deploying protease shaving and quantitative mass spectrometry to identify Mtb outer membrane proteins which serve as nodes in the Mtb-host interaction network. These analyses revealed several novel Mtb proteins on the Mtb surface largely derived from the PE/PPE class of Mtb proteins, including PPE18, a component of a leading Mtb vaccine candidate. We next exploited the localization of PPE18 to decorate the Mtb surface with heterologous proteins and deliver these surface-engineered Mtb to the phagosome. Together, these studies reveal potential novel targets for new Mtb vaccines as well as facilitate new approaches to study difficult to study cellular compartments during infection.

4.
Elife ; 122023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37073954

RESUMO

CD8+ T cell recognition of Mycobacterium tuberculosis (Mtb)-specific peptides presented on major histocompatibility complex class I (MHC-I) contributes to immunity to tuberculosis (TB), but the principles that govern presentation of Mtb antigens on MHC-I are incompletely understood. In this study, mass spectrometry (MS) analysis of the MHC-I repertoire of Mtb-infected primary human macrophages reveals that substrates of Mtb's type VII secretion systems (T7SS) are overrepresented among Mtb-derived peptides presented on MHC-I. Quantitative, targeted MS shows that ESX-1 activity is required for presentation of Mtb peptides derived from both ESX-1 substrates and ESX-5 substrates on MHC-I, consistent with a model in which proteins secreted by multiple T7SSs access a cytosolic antigen processing pathway via ESX-1-mediated phagosome permeabilization. Chemical inhibition of proteasome activity, lysosomal acidification, or cysteine cathepsin activity did not block presentation of Mtb antigens on MHC-I, suggesting involvement of other proteolytic pathways or redundancy among multiple pathways. Our study identifies Mtb antigens presented on MHC-I that could serve as targets for TB vaccines, and reveals how the activity of multiple T7SSs interacts to contribute to presentation of Mtb antigens on MHC-I.


Assuntos
Apresentação de Antígeno , Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , Antígenos de Bactérias , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/metabolismo
5.
mSystems ; 6(4): e0031021, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34342538

RESUMO

T cells must recognize pathogen-derived peptides bound to major histocompatibility complexes (MHCs) in order to initiate a cell-mediated immune response against an infection, or to support the development of high-affinity antibody responses. Identifying antigens presented on MHCs by infected cells and professional antigen-presenting cells (APCs) during infection may therefore provide a route toward developing new vaccines. Peptides bound to MHCs can be identified at whole-proteome scale using mass spectrometry-a technique referred to as "immunopeptidomics." This technique has emerged as a powerful tool for identifying potential vaccine targets in the context of many infectious diseases. In this review, we discuss the contributions immunopeptidomic studies have made to understanding antigen presentation and T cell priming in the context of infection and the potential for immunopeptidomics to inform the development of vaccines to address pressing global health problems in infectious disease.

6.
Sci Adv ; 6(7): eaay2760, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32110728

RESUMO

Bacterial response to transient physical stress is critical to their homeostasis and survival in the dynamic natural environment. Because of the lack of biophysical tools capable of delivering precise and localized physical perturbations to a bacterial community, the underlying mechanism of microbial signal transduction has remained unexplored. Here, we developed multiscale and structured silicon (Si) materials as nongenetic optical transducers capable of modulating the activities of both single bacterial cells and biofilms at high spatiotemporal resolution. Upon optical stimulation, we capture a previously unidentified form of rapid, photothermal gradient-dependent, intercellular calcium signaling within the biofilm. We also found an unexpected coupling between calcium dynamics and biofilm mechanics, which could be of importance for biofilm resistance. Our results suggest that functional integration of Si materials and bacteria, and associated control of signal transduction, may lead to hybrid living matter toward future synthetic biology and adaptable materials.


Assuntos
Bactérias/metabolismo , Transdução de Sinais , Silício/química , Bactérias/ultraestrutura , Biofilmes , Sinalização do Cálcio , Nanofios/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA