Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Immunity ; 57(6): 1324-1344.e8, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38776918

RESUMO

Peripheral CD8+ T cell tolerance is a checkpoint in both autoimmune disease and anti-cancer immunity. Despite its importance, the relationship between tolerance-induced states and other CD8+ T cell differentiation states remains unclear. Using flow cytometric phenotyping, single-cell RNA sequencing (scRNA-seq), and chromatin accessibility profiling, we demonstrated that in vivo peripheral tolerance to a self-antigen triggered a fundamentally distinct differentiation state separate from exhaustion, memory, and functional effector cells but analogous to cells defectively primed against tumors. Tolerant cells diverged early and progressively from effector cells, adopting a transcriptionally and epigenetically distinct state within 60 h of antigen encounter. Breaching tolerance required the synergistic actions of strong T cell receptor (TCR) signaling and inflammation, which cooperatively induced gene modules that enhanced protein translation. Weak TCR signaling during bystander infection failed to breach tolerance due to the uncoupling of effector gene expression from protein translation. Thus, tolerance engages a distinct differentiation trajectory enforced by protein translation defects.


Assuntos
Linfócitos T CD8-Positivos , Diferenciação Celular , Tolerância Imunológica , Biossíntese de Proteínas , Receptores de Antígenos de Linfócitos T , Linfócitos T CD8-Positivos/imunologia , Animais , Diferenciação Celular/imunologia , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Tolerância Imunológica/imunologia , Biossíntese de Proteínas/imunologia , Transdução de Sinais/imunologia , Camundongos Endogâmicos C57BL , Autoantígenos/imunologia
2.
Nature ; 532(7599): 323-8, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27074509

RESUMO

Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols.


Assuntos
Vasos Sanguíneos/citologia , Vasos Sanguíneos/fisiologia , Medula Óssea/irrigação sanguínea , Hematopoese , Animais , Antígenos Ly/metabolismo , Artérias/citologia , Artérias/fisiologia , Células da Medula Óssea/citologia , Diferenciação Celular , Movimento Celular , Autorrenovação Celular , Sobrevivência Celular , Quimiocina CXCL12/metabolismo , Células Endoteliais/fisiologia , Feminino , Mobilização de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Leucócitos/citologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nestina/metabolismo , Pericitos/fisiologia , Permeabilidade , Plasma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores CXCR4/metabolismo
3.
Blood ; 134(1): 30-43, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31023703

RESUMO

The era of targeted therapies has seen significant improvements in depth of response, progression-free survival, and overall survival for patients with multiple myeloma. Despite these improvements in clinical outcome, patients inevitably relapse and require further treatment. Drug-resistant dormant myeloma cells that reside in specific niches within the skeleton are considered a basis of disease relapse but remain elusive and difficult to study. Here, we developed a method to sequence the transcriptome of individual dormant myeloma cells from the bones of tumor-bearing mice. Our analyses show that dormant myeloma cells express a distinct transcriptome signature enriched for immune genes and, unexpectedly, genes associated with myeloid cell differentiation. These genes were switched on by coculture with osteoblastic cells. Targeting AXL, a gene highly expressed by dormant cells, using small-molecule inhibitors released cells from dormancy and promoted their proliferation. Analysis of the expression of AXL and coregulated genes in human cohorts showed that healthy human controls and patients with monoclonal gammopathy of uncertain significance expressed higher levels of the dormancy signature genes than patients with multiple myeloma. Furthermore, in patients with multiple myeloma, the expression of this myeloid transcriptome signature translated into a twofold increase in overall survival, indicating that this dormancy signature may be a marker of disease progression. Thus, engagement of myeloma cells with the osteoblastic niche induces expression of a suite of myeloid genes that predicts disease progression and that comprises potential drug targets to eradicate dormant myeloma cells.


Assuntos
Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/genética , Células-Tronco Neoplásicas/patologia , Nicho de Células-Tronco/genética , Animais , Humanos , Camundongos , Recidiva Local de Neoplasia/patologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Transcriptoma , Receptor Tirosina Quinase Axl
5.
Blood Adv ; 8(13): 3562-3575, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38574299

RESUMO

ABSTRACT: Multiple myeloma is characterized by frequent clinical relapses after conventional therapy. Recently, chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen (BCMA) has been established as a treatment option for patients with relapsed or refractory disease. However, although >70% of patients initially respond to this treatment, clinical relapse and disease progression occur in most cases. Recent studies showed persistent expression of BCMA at the time of relapse, indicating that immune-intrinsic mechanisms may contribute to this resistance. Although there were no preexisting T-cell features associated with clinical outcomes, we found that patients with a durable response to CAR T-cell treatment had greater persistence of their CAR T cells than patients with transient clinical responses. They also possessed a significantly higher proportion of CD8+ T-effector memory cells. In contrast, patients with short-lived responses to treatment have increased frequencies of cytotoxic CD4+ CAR T cells. These cells expand in vivo early after infusion but express exhaustion markers (hepatitis A virus cellular receptor 2 [HAVCR2] and T-cell immunoglobulin and mucin domain-containing-3 [TIGIT]) and remain polyclonal. Finally, we demonstrate that nonclassical monocytes are enriched in the myeloma niche and may induce CAR T-cell dysfunction through mechanisms that include transforming growth factor ß. These findings shed new light on the role of cytotoxic CD4+ T cells in disease progression after CAR T-cell therapy.


Assuntos
Antígeno de Maturação de Linfócitos B , Linfócitos T CD4-Positivos , Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Humanos , Antígeno de Maturação de Linfócitos B/metabolismo , Antígeno de Maturação de Linfócitos B/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Recidiva , Masculino , Feminino , Exaustão das Células T
6.
Front Oncol ; 11: 783703, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938662

RESUMO

Chimeric antigen receptor T-cell (CAR-T) therapy targeted against B-cell maturation antigen (BCMA) in multiple myeloma (MM) has produced rapid responses but many eventually relapse. In light of this new treatment, novel predictors of progression-free survival (PFS) are needed. We performed a single institution analysis of 54 BCMA-CAR-T patients. We analyzed patient's overall response rate (ORR) by the IMWG criteria, involved serum-free light chains (iFLC), and minimal residual disease testing by next-generation sequencing (MRD-NGS). Between patients who achieved a ≤SD and those who achieved a ≥PR, PFS differed significantly (p < 0.0001); though there was no difference between patients who achieved a ≥CR vs. VGPR/PR (p = 0.2). In contrast, patients who achieved a nonelevated iFLC at 15 days (p < 0.0001, HR = 6.8; 95% CI, 2.7-17.3) or 30 days (p < 0.001, HR = 16.7; 95% CI, 3.9-71.7) had a prolonged PFS compared with those with an elevated iFLC. Patients achieving MRD-NGS less than the detectable limit at a sensitivity of 10-6 had a better PFS than those with detectable disease at 1 month (p = 0.02) and 3 months (p = 0.02). In conclusion, achieving a nonelevated iFLC and an undetectable MRD-NGS quickly were factors that were strongly associated with improved PFS. Further studies are needed to confirm the role of these markers in MM patients receiving CAR-T therapies.

7.
Nat Commun ; 11(1): 1917, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317634

RESUMO

The evolution and progression of multiple myeloma and its precursors over time is poorly understood. Here, we investigate the landscape and timing of mutational processes shaping multiple myeloma evolution in a large cohort of 89 whole genomes and 973 exomes. We identify eight processes, including a mutational signature caused by exposure to melphalan. Reconstructing the chronological activity of each mutational signature, we estimate that the initial transformation of a germinal center B-cell usually occurred during the first 2nd-3rd decades of life. We define four main patterns of activation-induced deaminase (AID) and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) mutagenesis over time, including a subset of patients with evidence of prolonged AID activity during the pre-malignant phase, indicating antigen-responsiveness and germinal center reentry. Our findings provide a framework to study the etiology of multiple myeloma and explore strategies for prevention and early detection.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/etiologia , Mieloma Múltiplo/genética , Desaminase APOBEC-1/metabolismo , Citidina Desaminase/metabolismo , Análise Mutacional de DNA , Detecção Precoce de Câncer , Exoma , Genética , Centro Germinativo/patologia , Humanos , Modelos Lineares , Antígenos de Histocompatibilidade Menor/metabolismo , Mutação , Proteínas/metabolismo , Edição de RNA , RNA Mensageiro , Análise de Célula Única
8.
Nat Med ; 24(12): 1867-1876, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30523328

RESUMO

Multiple myeloma, a plasma cell malignancy, is the second most common blood cancer. Despite extensive research, disease heterogeneity is poorly characterized, hampering efforts for early diagnosis and improved treatments. Here, we apply single cell RNA sequencing to study the heterogeneity of 40 individuals along the multiple myeloma progression spectrum, including 11 healthy controls, demonstrating high interindividual variability that can be explained by expression of known multiple myeloma drivers and additional putative factors. We identify extensive subclonal structures for 10 of 29 individuals with multiple myeloma. In asymptomatic individuals with early disease and in those with minimal residual disease post-treatment, we detect rare tumor plasma cells with molecular characteristics similar to those of active myeloma, with possible implications for personalized therapies. Single cell analysis of rare circulating tumor cells allows for accurate liquid biopsy and detection of malignant plasma cells, which reflect bone marrow disease. Our work establishes single cell RNA sequencing for dissecting blood malignancies and devising detailed molecular characterization of tumor cells in symptomatic and asymptomatic patients.


Assuntos
Heterogeneidade Genética , Mieloma Múltiplo/sangue , Neoplasia Residual/sangue , Mieloma Múltiplo Latente/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Neoplasia Residual/genética , Neoplasia Residual/patologia , Mieloma Múltiplo Latente/genética , Mieloma Múltiplo Latente/patologia
9.
Nat Med ; 21(11): 1307-17, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26457757

RESUMO

Retention of long-term repopulating hematopoietic stem cells (LT-HSCs) in the bone marrow is essential for hematopoiesis and for protection from myelotoxic injury. We report that signaling cascades that are traditionally viewed as coagulation related also control retention of endothelial protein C receptor-positive (EPCR(+)) LT-HSCs in the bone marrow and their recruitment to the blood via two pathways mediated by protease activated receptor 1 (PAR1). Thrombin-PAR1 signaling induces nitric oxide (NO) production, leading to EPCR shedding mediated by tumor necrosis factor-α-converting enzyme (TACE), enhanced CXCL12-CXCR4-induced motility and rapid stem and progenitor cell mobilization. Conversely, bone marrow blood vessels provide a microenvironment enriched with activated protein C (aPC) that retains EPCR(+) LT-HSCs by limiting NO generation, reducing Cdc42 activity and enhancing integrin VLA4 affinity and adhesion. Inhibition of NO production by aPC-EPCR-PAR1 signaling reduces progenitor cell egress from the bone marrow, increases retention of bone marrow NO(low) EPCR(+) LT-HSCs and protects mice from chemotherapy-induced hematological failure and death. Our study reveals new roles for PAR1 and EPCR in controlling NO production to balance maintenance and recruitment of bone marrow EPCR(+) LT-HSCs, with potential clinical relevance for stem cell transplantation.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Óxido Nítrico/metabolismo , Proteína C/metabolismo , Receptor PAR-1/metabolismo , Receptores de Superfície Celular/metabolismo , Trombina/metabolismo , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Medula Óssea/metabolismo , Adesão Celular , Movimento Celular , Quimiocina CXCL12/metabolismo , Receptor de Proteína C Endotelial , Células-Tronco Hematopoéticas/citologia , Integrina alfa4beta1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores CXCR4/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo
10.
Antioxid Redox Signal ; 21(11): 1605-19, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24762207

RESUMO

SIGNIFICANCE: Blood forming, hematopoietic stem cells (HSCs) mostly reside in the bone marrow in a quiescent, nonmotile state via adhesion interactions with stromal cells and macrophages. Quiescent, proliferating, and differentiating stem cells have different metabolism, and accordingly different amounts of intracellular reactive oxygen species (ROS). Importantly, ROS is not just a byproduct of metabolism, but also plays a role in stem cell state and function. RECENT ADVANCES: ROS levels are dynamic and reversibly dictate enhanced cycling and myeloid bias in ROS(high) short-term repopulating stem cells, and ROS(low) quiescent long-term repopulating stem cells. Low levels of ROS, regulated by intrinsic factors such as cell respiration or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) activity, or extrinsic factors such as stem cell factor or prostaglandin E2 are required for maintaining stem cell self-renewal. High ROS levels, due to stress and inflammation, induce stem cell differentiation and enhanced motility. CRITICAL ISSUES: Stem cells need to be protected from high ROS levels to avoid stem cell exhaustion, insufficient host immunity, and leukemic transformation that may occur during chronic inflammation. However, continuous low ROS production will lead to lack of stem cell function and opportunistic infections. Ultimately, balanced ROS levels are crucial for maintaining the small stem cell pool and host immunity, both in homeostasis and during stress situations. FUTURE DIRECTIONS: Deciphering the signaling pathway of ROS in HSC will provide a better understanding of ROS roles in switching HSC from quiescence to activation and vice versa, and will also shed light on the possible roles of ROS in leukemia initiation and development.


Assuntos
Células da Medula Óssea , Medula Óssea/metabolismo , Diferenciação Celular , Movimento Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nicho de Células-Tronco/fisiologia , Animais , Ciclo Celular , Proliferação de Células , Neoplasias Hematológicas/metabolismo , Humanos , Inflamação/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA