RESUMO
In arthropods, the melanization reaction is associated with multiple host defense mechanisms leading to the sequestration and killing of invading microorganisms. Arthropod melanization is controlled by a cascade of serine proteases that ultimately activates the enzyme prophenoloxidase (PPO), which, in turn, catalyzes the synthesis of melanin. Here we report the biochemical and genetic characterization of a Drosophila serine protease inhibitor protein, Serpin-27A, which regulates the melanization cascade through the specific inhibition of the terminal protease prophenoloxidase-activating enzyme. Our data demonstrate that Serpin-27A is required to restrict the phenoloxidase activity to the site of injury or infection, preventing the insect from excessive melanization.
Assuntos
Proteínas de Drosophila/imunologia , Drosophila melanogaster/imunologia , Serpinas/imunologia , Sequência de Aminoácidos , Animais , Catecol Oxidase/imunologia , Catecol Oxidase/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Precursores Enzimáticos/imunologia , Precursores Enzimáticos/metabolismo , Melaninas/imunologia , Melaninas/metabolismo , Dados de Sequência Molecular , Mutação , Serpinas/genética , Transdução de Sinais/imunologiaRESUMO
Wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) biofilm represent a high risk in patients with diabetes. Nitric oxide (NO) has shown promise in dispersing biofilm and wound healing. For an effective treatment of MRSA biofilm-infected wounds, however, NO needs to be supplied to the biofilm matrix in a sustainable manner due to a short half-life and limited diffusion distance of NO. In this study, polyethylenimine/diazeniumdiolate (PEI/NONOate)-doped PLGA nanoparticles (PLGA-PEI/NO NPs) with an ability to bind to the biofilm matrix are developed to facilitate the NO delivery to MRSA biofilm-infected wound. In simulated wound fluid, PLGA-PEI/NO NPs show an extended NO release over 4â¯days. PLGA-PEI/NO NPs firmly bind to the MRSA biofilm matrix, resulting in a greatly enhanced anti-biofilm activity. Moreover, PLGA-PEI/NO NPs accelerate healing of MRSA biofilm-infected wounds in diabetic mice along with complete biofilm dispersal and reduced bacterial burden. These results suggest that the biofilm-binding NO-releasing NPs represent a promising NO delivery system for the treatments of biofilm-infected chronic wounds.
Assuntos
Antibacterianos/farmacologia , Complicações do Diabetes/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas/química , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Ferimentos e Lesões/tratamento farmacológico , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Compostos Azo/química , Biofilmes/efeitos dos fármacos , Complicações do Diabetes/microbiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/microbiologia , Liberação Controlada de Fármacos , Masculino , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Óxido Nítrico/farmacocinética , Polietilenoimina/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Infecções Cutâneas Estafilocócicas/complicações , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/complicações , Ferimentos e Lesões/microbiologia , Ferimentos e Lesões/patologiaRESUMO
Methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds have become a significant clinical issue worldwide. Recently, nitric oxide (NO) has emerged as a potent antibacterial agent against MRSA infections and a wound-healing enhancer. Nevertheless, clinical applications of NO have been largely restricted by its gaseous state and short half-life. In this study, our aim was to develop S-nitrosoglutathione (GSNO, an endogenous NO donor)-loaded poly(lactic-co-glycolic acid) [PLGA] microparticles (GSNO-MPs) that release NO over a prolonged period, to accelerate the healing of MRSA-infected wounds with less frequent dosing. GSNO was successfully encapsulated into PLGA microparticles by a solid-in-oil-in-water emulsion solvent evaporation method. Scanning electron microscopy and X-ray diffraction analyses confirmed the successful fabrication of GSNO-MPs. The latter released NO in a prolonged manner over 7â¯days and exerted a remarkable antibacterial activity against MRSA in a concentration- and time-dependent manner. Moreover, GSNO-MPs had good antibacterial efficacy and were found to accelerate wound healing in a mouse model of MRSA-infected wounds. Therefore, NO-releasing MPs devised in this study may be a promising option for the treatment of cutaneous wounds infected by drug-resistant bacteria such as MRSA.
Assuntos
S-Nitrosoglutationa/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Preparações de Ação Retardada , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Microscopia Eletrônica de Varredura , Microesferas , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/administração & dosagem , Doadores de Óxido Nítrico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , S-Nitrosoglutationa/farmacologia , Infecções Estafilocócicas/microbiologia , Fatores de Tempo , Difração de Raios XRESUMO
Clip-domain serine proteases (SPs) have been identified in invertebrates as crucial enzymes that are involved in diverse extracellular signalling pathways. Prophenoloxidase (proPO) activating factor-I (PPAF-I), a catalytically active clip-domain SP, cleaves proPO. To date, no crystal structures of a catalytically active clip-domain SP have been determined. Here, the results of crystallization and preliminary X-ray analysis of the SP domain of PPAF-I are reported. The crystal of the PPAF-I SP domain was obtained using the hanging-drop vapour-diffusion method in a precipitant solution containing 0.15 M lithium sulfate, 30% polyethylene glycol 4000 and 0.1 M Tris-HCl pH 8.0. The crystal diffracts X-rays to 1.7 angstroms resolution using a synchrotron-radiation source. The crystal belongs to space group P2(1)2(1)2(1), with one molecule in the asymmetric unit and unit-cell parameters a = 38.3, b = 53.3, c = 116.6 angstroms, alpha = beta = gamma = 90 degrees. A molecular-replacement solution has been found using kallikrein as a starting model, resulting in an interpretable electron-density map.
Assuntos
Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Serina Endopeptidases/química , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Difração de Raios XRESUMO
A family of serine proteases (SPs) mediates the proteolytic cascades of embryonic development and immune response in invertebrates. These proteases, called easter-type SPs, consist of clip and chymotrypsin-like SP domains. The SP domain of easter-type proteases differs from those of typical SPs in its primary structure. Herein, we report the first crystal structure of the SP domain of easter-type proteases, presented as that of prophenoloxidase activating factor (PPAF)-I in zymogen form. This structure reveals several important structural features including a bound calcium ion, an additional loop with a unique disulfide linkage, a canyon-like deep active site, and an exposed activation loop. We subsequently show the role of the bound calcium and the proteolytic susceptibility of the activation loop, which occurs in a clip domain-independent manner. Based on biochemical study in the presence of heparin, we suggest that PPAF-III, highly homologous to PPAF-I, contains a surface patch that is responsible for enhancing the catalytic activity through interaction with a nonsubstrate region of a target protein. These results provide insights into an activation mechanism of easter-type proteases in proteolytic cascades, in comparison with the well studied blood coagulation enzymes in mammals.
Assuntos
Besouros/enzimologia , Proteínas de Insetos/química , Serina Endopeptidases/química , Animais , Sítios de Ligação/fisiologia , Cálcio/química , Cálcio/imunologia , Cálcio/metabolismo , Catecol Oxidase/química , Catecol Oxidase/imunologia , Catecol Oxidase/metabolismo , Besouros/embriologia , Besouros/imunologia , Ativação Enzimática/fisiologia , Precursores Enzimáticos/química , Precursores Enzimáticos/imunologia , Precursores Enzimáticos/metabolismo , Proteínas de Insetos/imunologia , Proteínas de Insetos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Serina Endopeptidases/imunologia , Serina Endopeptidases/metabolismo , Homologia Estrutural de ProteínaRESUMO
Clip-domain serine proteases (SPs) are the essential components of extracellular signaling cascades in various biological processes, especially in embryonic development and the innate immune responses of invertebrates. They consist of a chymotrypsin-like SP domain and one or two clip domains at the N-terminus. Prophenoloxidase-activating factor (PPAF)-II, which belongs to the noncatalytic clip-domain SP family, is indispensable for the generation of the active phenoloxidase leading to melanization, a major defense mechanism of insects. Here, the crystal structure of PPAF-II reveals that the clip domain adopts a novel fold containing a central cleft, which is distinct from the structures of defensins with a similar arrangement of cysteine residues. Ensuing studies demonstrated that PPAF-II forms a homo-oligomer upon cleavage by the upstream protease and that the clip domain of PPAF-II functions as a module for binding phenoloxidase through the central cleft, while the clip domain of a catalytically active easter-type SP plays an essential role in the rapid activation of its protease domain.