Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Biomed Sci ; 31(1): 54, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790021

RESUMO

BACKGROUND: Alcohol-related liver disease (ALD) is a major health concern worldwide, but effective therapeutics for ALD are still lacking. Tumor necrosis factor-inducible gene 6 protein (TSG-6), a cytokine released from mesenchymal stem cells, was shown to reduce liver fibrosis and promote successful liver repair in mice with chronically damaged livers. However, the effect of TSG-6 and the mechanism underlying its activity in ALD remain poorly understood. METHODS: To investigate its function in ALD mice with fibrosis, male mice chronically fed an ethanol (EtOH)-containing diet for 9 weeks were treated with TSG-6 (EtOH + TSG-6) or PBS (EtOH + Veh) for an additional 3 weeks. RESULTS: Severe hepatic injury in EtOH-treated mice was markedly decreased in TSG-6-treated mice fed EtOH. The EtOH + TSG-6 group had less fibrosis than the EtOH + Veh group. Activation of cluster of differentiation 44 (CD44) was reported to promote HSC activation. CD44 and nuclear CD44 intracellular domain (ICD), a CD44 activator which were upregulated in activated HSCs and ALD mice were significantly downregulated in TSG-6-exposed mice fed EtOH. TSG-6 interacted directly with the catalytic site of MMP14, a proteolytic enzyme that cleaves CD44, inhibited CD44 cleavage to CD44ICD, and reduced HSC activation and liver fibrosis in ALD mice. In addition, a novel peptide designed to include a region that binds to the catalytic site of MMP14 suppressed CD44 activation and attenuated alcohol-induced liver injury, including fibrosis, in mice. CONCLUSIONS: These results demonstrate that TSG-6 attenuates alcohol-induced liver damage and fibrosis by blocking CD44 cleavage to CD44ICD and suggest that TSG-6 and TSG-6-mimicking peptide could be used as therapeutics for ALD with fibrosis.


Assuntos
Moléculas de Adesão Celular , Receptores de Hialuronatos , Cirrose Hepática , Hepatopatias Alcoólicas , Animais , Masculino , Camundongos , Moléculas de Adesão Celular/administração & dosagem , Etanol , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Camundongos Endogâmicos C57BL , Peptídeos/farmacologia , Peptídeos/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731968

RESUMO

Cluster of differentiation 44 (CD44), a multi-functional cell surface receptor, has several variants and is ubiquitously expressed in various cells and tissues. CD44 is well known for its function in cell adhesion and is also involved in diverse cellular responses, such as proliferation, migration, differentiation, and activation. To date, CD44 has been extensively studied in the field of cancer biology and has been proposed as a marker for cancer stem cells. Recently, growing evidence suggests that CD44 is also relevant in non-cancer diseases. In liver disease, it has been shown that CD44 expression is significantly elevated and associated with pathogenesis by impacting cellular responses, such as metabolism, proliferation, differentiation, and activation, in different cells. However, the mechanisms underlying CD44's function in liver diseases other than liver cancer are still poorly understood. Hence, to help to expand our knowledge of the role of CD44 in liver disease and highlight the need for further research, this review provides evidence of CD44's effects on liver physiology and its involvement in the pathogenesis of liver disease, excluding cancer. In addition, we discuss the potential role of CD44 as a key regulator of cell physiology.


Assuntos
Receptores de Hialuronatos , Hepatopatias , Fígado , Humanos , Receptores de Hialuronatos/metabolismo , Fígado/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Animais , Diferenciação Celular
3.
Mol Ther ; 29(4): 1471-1486, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33348053

RESUMO

Mesenchymal stromal cells (MSCs) are considered as a promising therapeutic tool for liver fibrosis, a main feature of chronic liver disease. Because small extracellular vesicles (sEVs) harboring a variety of proteins and RNAs are known to have similar functions with their derived cells, MSC-derived sEVs carry out the regenerative capacities of MSCs. Human tonsil-derived MSCs (T-MSCs) are reported as a novel source of MSCs, but their effects on liver fibrosis remain unclear. In the present study, we investigated the effects of T-MSC-derived sEVs on liver fibrosis. The expression of profibrotic genes decreased in human primary hepatic stellate cells (pHSCs) co-cultured with T-MSCs. Treatment of T-MSC-sEVs inactivated human and mouse pHSCs. Administration of T-MSC-sEVs ameliorated hepatic injuries and fibrosis in chronically damaged liver induced by carbon tetrachloride (CCl4). miR-486-5p highly enriched in T-MSC-sEVs targeting the hedgehog receptor, smoothened (Smo), was upregulated, whereas Smo and Gli2, the hedgehog target gene, were downregulated in pHSCs and liver tissues treated with T-MSC-sEVs or miR-486-5p mimic, indicating that sEV-miR-486 inactivates HSCs by suppressing hedgehog signaling. Our results showed that T-MSCs attenuate HSC activation and liver fibrosis by delivering sEVs, and miR-486 in the sEVs inactivates hedgehog signaling, suggesting that T-MSCs and their sEVs are novel anti-fibrotic therapeutics for treating chronic liver disease.


Assuntos
Cirrose Hepática/terapia , MicroRNAs/genética , Proteínas Nucleares/genética , Receptor Smoothened/genética , Proteína Gli2 com Dedos de Zinco/genética , Animais , Tetracloreto de Carbono/toxicidade , Técnicas de Cocultura , Vesículas Extracelulares/genética , Vesículas Extracelulares/transplante , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Hedgehog/genética , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Tonsila Palatina/citologia , Tonsila Palatina/metabolismo , Transdução de Sinais
4.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071962

RESUMO

Alcoholic liver disease (ALD) is a globally prevalent chronic liver disease caused by chronic or binge consumption of alcohol. The liver is the major organ that metabolizes alcohol; therefore, it is particularly sensitive to alcohol intake. Metabolites and byproducts generated during alcohol metabolism cause liver damage, leading to ALD via several mechanisms, such as impairing lipid metabolism, intensifying inflammatory reactions, and inducing fibrosis. Despite the severity of ALD, the development of novel treatments has been hampered by the lack of animal models that fully mimic human ALD. To overcome the current limitations of ALD studies and therapy development, it is necessary to understand the molecular mechanisms underlying alcohol-induced liver injury. Hence, to provide insights into the progression of ALD, this review examines previous studies conducted on alcohol metabolism in the liver. There is a particular focus on the occurrence of ALD caused by hepatotoxicity originating from alcohol metabolism.


Assuntos
Etanol/metabolismo , Inativação Metabólica , Fígado/metabolismo , Animais , Suscetibilidade a Doenças , Hepatócitos/metabolismo , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunomodulação , Metabolismo dos Lipídeos , Fígado/imunologia , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Redes e Vias Metabólicas , Oxirredução , Espécies Reativas de Oxigênio , Sensibilidade e Especificidade
5.
Int J Mol Sci ; 20(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086120

RESUMO

Kombucha tea (KT) has emerged as a substance that protects the liver from damage; however, its mechanisms of action on the fatty liver remain unclear. Therefore, we investigated the potential role of KT and its underlying mechanisms on nonalcoholic fatty liver disease (NAFLD). db/db mice that were fed methionine/choline-deficient (MCD) diets for seven weeks were treated for vehicle (M + V) or KT (M + K) and fed with MCD for four additional weeks. Histomorphological injury and increased levels of liver enzymes and lipids were evident in the M + V group, whereas these symptoms were ameliorated in the M + K group. The M + K group had more proliferating and less apoptotic hepatocytic cells than the M + V group. Lipid uptake and lipogenesis significantly decreased, and free fatty acid (FFA) oxidation increased in the M + K, when compared with the M + V group. With the reduction of hedgehog signaling, inflammation and fibrosis also declined in the M + K group. Palmitate (PA) treatment increased the accumulation of lipid droplets and decreased the viability of primary hepatocytes, whereas KT suppressed PA-induced damage in these cells by enhancing intracellular lipid disposal. These results suggest that KT protects hepatocytes from lipid toxicity by influencing the lipid metabolism, and it attenuates inflammation and fibrosis, which contributes to liver restoration in mice with NAFLD.


Assuntos
Chá de Kombucha , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Palmitatos/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Proteínas Hedgehog , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Imuno-Histoquímica , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Cell Physiol Biochem ; 50(4): 1414-1428, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30355912

RESUMO

BACKGROUND/AIMS: Malaria is the most deadly parasitic infection in the world, resulting in damage to various organs, including the liver, of the infected organism; however, the mechanism causing this damage in the liver remains unclear. Liver fibrosis, a major characteristic of liver diseases, occurs in response to liver injury and is regulated by a complex network of signaling pathways. Hedgehog (Hh) signaling orchestrates a number of hepatic responses including hepatic fibrogenesis. Therefore, we investigated whether Hh signaling influenced the liver's response to malarial infection. METHODS: Eight-week-old male C57BL/6 mice inoculated with blood containing Plasmodium berghei ANKA (PbA)-infected erythrocytes were sacrificed when the level of parasitemia in the blood reached 10% or 30%, and the livers were collected for biochemical analysis. Liver responses to PbA infection were examined by hematoxylin and eosin staining, real-time polymerase chain reaction, immunohistochemistry and western blot. RESULTS: Severe hepatic injury, such as ballooned hepatocytes, sinusoidal dilatation, and infiltrated leukocytes, was evident in the livers of the malaria-infected mice. Hypoxia was also induced in 30% parasitemia group. With the accumulation of Kupffer cells, inflammation markers, TNF-α, interleukin-1ß, and chemokine (C-X-C motif) ligand 1, were significantly upregulated in the infected group compared with the control group. Expression of fibrotic markers, including transforming growth factor-ß, α-smooth muscle actin (α-SMA), collagen 1a1, thymosin ß4, and vimentin, were significantly higher in the infected groups than in the control group. With increased collagen deposition, hepatic stellate cells expressing α-SMA accumulated in the liver of the PbA-infected mice, whereas those cells were rarely detected in the livers of the control mice. The levels of Hh signaling and Yes-associated protein (YAP), two key regulators for hepatic fibrogenesis, were significantly elevated in the infected groups compared with the control group. Treatment of mice with Hh inhibitor, GDC-0449, reduced hepatic inflammation and fibrogenesis with Hh suppression in PbA-infected mice. CONCLUSION: Our results demonstrate that HSCs are activated in and Hh and YAP signaling are associated with this process, contributing to increased hepatic fibrosis in malaria-infected livers.


Assuntos
Proteínas Hedgehog/metabolismo , Fígado/metabolismo , Plasmodium berghei/patogenicidade , Transdução de Sinais/fisiologia , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anilidas/uso terapêutico , Animais , Proteínas de Ciclo Celular , Quimiocinas C/metabolismo , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Proteínas Hedgehog/antagonistas & inibidores , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Fígado/parasitologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Malária/parasitologia , Malária/patologia , Malária/veterinária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Piridinas/uso terapêutico , Timosina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima , Vimentina/metabolismo , Proteínas de Sinalização YAP
7.
J Surg Case Rep ; 2024(3): rjae123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463740

RESUMO

Diabetic cheiroarthropathy (DCA) is a relatively uncommon and underdiagnosed complication of poorly controlled diabetes. It is caused by non-enzymatic glycation of collagen that ultimately leads to microvascular damage and polyarticular stiffness. If diagnosed early, optimal management of serum glucose levels may lessen joint stiffness and prevent microvascular and macrovascular complications associated with diabetes mellitus. We review the case of a 55-year-old male with type 2 diabetes mellitus who was diagnosed with DCA after complaints of chronic joint stiffness and immobility.

8.
Exp Mol Med ; 55(2): 325-332, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36750693

RESUMO

Formyl peptide receptors (FPRs), which are seven-membrane G-protein coupled receptors, recognize chemotactic signals to protect hosts from pathogenic infections and mediate inflammatory responses in the body. There are three isoforms of FPRs in humans-FPR1, FPR2, and FPR3-and they bind to N-formyl peptides, except FPR3, and to various endogenous agonists. Among FPR family members, FPR2 has a lower affinity for N-formyl peptides than FPR1 and binds with a wide range of endogenous or exogenous agonists. Thus, FPR2 is considered the most ambiguous member. Accumulating evidence has shown that FPR2 is involved in the host's defense against bacterial infection and inflammation in liver diseases, such as nonalcoholic fatty liver disease, liver fibrosis, and liver cancer, suggesting the pathophysiological relevance of FPR2 to the liver. However, FPR2 has been shown to promote or suppress inflammation, depending on the type of FPR2-expressing cell and FPR2-bound ligands in the liver. Therefore, it is important to understand FPR2's function per se and to elucidate the mechanism underlying immunomodulation initiated by ligand-activated FPR2 before suggesting FPR2 as a novel therapeutic agent for liver diseases. In this review, up-to-date knowledge of FPR2, with general information on the FPR family, is provided. We shed light on the dual action of FPR2 in the liver and discuss the hepatoprotective roles of FPR2 itself and FPR2 agonists in mediating anti-inflammatory responses.


Assuntos
Inflamação , Receptores de Formil Peptídeo , Humanos , Receptores de Formil Peptídeo/metabolismo , Isoformas de Proteínas , Ligantes , Fígado/metabolismo
9.
Exp Biol Med (Maywood) ; 248(15): 1313-1318, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37786387

RESUMO

Chronic liver disease is one of the most common diseases worldwide, and its prevalence is particularly high among adults aged 40-60 years; it takes a toll on productivity and causes significant economic burden. However, there are still no effective treatments that can fundamentally treat chronic liver disease. Although liver transplantation is considered the only effective treatment for chronic liver disease, it has limitations in that the pool of available donors is vastly insufficient for the number of potential recipients. Even if a patient undergoes liver transplantation, side effects such as immune rejection or bile duct complications could occur. In addition, impaired liver regeneration due to various causes, such as aging and metabolic disorders, may cause liver failure after liver resection, even leading to death. Therefore, further research on the liver regeneration process and therapeutic strategies to improve liver regeneration are needed. In this review, we describe the process of liver regeneration after hepatectomy, focusing on various cytokines and signaling pathways. In addition, we review treatment strategies that have been studied to date to improve liver regeneration, such as promotion of hepatocyte proliferation and metabolism and transplantation of mesenchymal stem cells. This review helps to understand the physiological processes involved in liver regeneration and provides basic knowledge for developing treatments for successful liver regeneration.


Assuntos
Hepatopatias , Transplante de Fígado , Adulto , Humanos , Hepatectomia , Regeneração Hepática/fisiologia , Fígado/cirurgia , Fígado/metabolismo , Proliferação de Células
10.
Cells ; 12(12)2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37371128

RESUMO

Liver fibrosis is the most common feature of liver disease, and activated hepatic stellate cells (HSCs) are the main contributors to liver fibrosis. Thus, finding key targets that modulate HSC activation is important to prevent liver fibrosis. Previously, we showed that thymosin ß4 (Tß4) influenced HSC activation by interacting with the Hedgehog pathway in vitro. Herein, we generated Tß4 conditional knockout (Tß4-flox) mice to investigate in vivo functions of Tß4 in liver fibrosis. To selectively delete Tß4 in activated HSCs, double-transgenic (DTG) mice were generated by mating Tß4-flox mice with α-smooth muscle actin (α-Sma)-Cre-ERT2 mice, and these mice were administered carbon tetrachloride (CCl4) or underwent bile duct ligation to induce liver fibrosis. Tß4 was selectively suppressed in the activated HSCs of DTG mouse liver, and this reduction attenuated liver injury, including fibrosis, in both fibrotic models by repressing Hedgehog (Hh) signaling. In addition, the re-expression of Tß4 by an adeno-associated virus reversed the effect of HSC-specific Tß4 deletion and led to liver fibrosis with Hh activation in CCl4-exposed mice treated with tamoxifen. In conclusion, our results demonstrate that Tß4 is a crucial regulator of HSC activation, suggesting it as a novel therapeutic target for curing liver fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Timosina , Animais , Camundongos , Modelos Animais de Doenças , Proteínas Hedgehog/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos Transgênicos , Timosina/farmacologia , Timosina/metabolismo
11.
Biology (Basel) ; 11(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35625364

RESUMO

Extracellular vesicles (EVs) are membrane-bound endogenous nanoparticles released by the majority of cells into the extracellular space. Because EVs carry various cargo (protein, lipid, and nucleic acids), they transfer bioinformation that reflects the state of donor cells to recipient cells both in healthy and pathologic conditions, such as liver disease. Chronic liver disease (CLD) affects numerous people worldwide and has a high mortality rate. EVs released from damaged hepatic cells are involved in CLD progression by impacting intercellular communication between EV-producing and EV-receiving cells, thereby inducing a disease-favorable microenvironment. In patients with CLD, as well as in the animal models of CLD, the levels of released EVs are elevated. Furthermore, these EVs contain high levels of factors that accelerate disease progression. Therefore, it is important to understand the diverse roles of EVs and their cargoes to treat CLD. Herein, we briefly explain the biogenesis and types of EVs and summarize current findings presenting the role of EVs in the pathogenesis of CLD. As the role of microRNAs (miRNAs) within EVs in liver disease is well documented, the effects of miRNAs detected in EVs on CLD are reviewed. In addition, we discuss the therapeutic potential of EVs to treat CLD.

12.
Cells ; 12(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36611816

RESUMO

Alcoholic liver disease (ALD) is a globally prevalent chronic liver disease caused by chronic or binge consumption of alcohol. The therapeutic efficiency of current therapies for ALD is limited, and there is no FDA-approved therapy for ALD at present. Various strategies targeting pathogenic events in the progression of ALD are being investigated in preclinical and clinical trials. Recently, mesenchymal stem cells (MSCs) have emerged as a promising candidate for ALD treatment and have been tested in several clinical trials. MSC-released factors have captured attention, as they have the same therapeutic function as MSCs. Herein, we focus on current therapeutic options, recently proposed strategies, and their limitations in ALD treatment. Also, we review the therapeutic effects of MSCs and those of MSC-related secretory factors on ALD. Although accumulating evidence suggests the therapeutic potential of MSCs and related factors in ALD, the mechanisms underlying their actions in ALD have not been well studied. Further investigations of the detailed mechanisms underlying the therapeutic role of MSCs in ALD are required to expand MSC therapies to clinical applications. This review provides information on current or possible treatments for ALD and contributes to our understanding of the development of effective and safe treatments for ALD.


Assuntos
Hepatopatias Alcoólicas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Hepatopatias Alcoólicas/terapia , Hepatopatias Alcoólicas/patologia , Etanol , Células-Tronco Mesenquimais/patologia
13.
Nat Commun ; 13(1): 578, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102146

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is an important health concern worldwide and progresses into nonalcoholic steatohepatitis (NASH). Although prevalence and severity of NAFLD/NASH are higher in men than premenopausal women, it remains unclear how sex affects NAFLD/NASH pathophysiology. Formyl peptide receptor 2 (FPR2) modulates inflammatory responses in several organs; however, its role in the liver is unknown. Here we show that FPR2 mediates sex-specific responses to diet-induced NAFLD/NASH. NASH-like liver injury was induced in both sexes during choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) feeding, but compared with females, male mice had more severe hepatic damage. Fpr2 was more highly expressed in hepatocytes and healthy livers from females than males, and FPR2 deletion exacerbated liver damage in CDAHFD-fed female mice. Estradiol induced Fpr2 expression, which protected hepatocytes and the liver from damage. In conclusion, our results demonstrate that FPR2 mediates sex-specific responses to diet-induced NAFLD/NASH, suggesting a novel therapeutic target for NAFLD/NASH.


Assuntos
Progressão da Doença , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores de Formil Peptídeo/metabolismo , Caracteres Sexuais , Animais , Biomarcadores/metabolismo , Células Cultivadas , Deficiência de Colina/complicações , Citoproteção/efeitos dos fármacos , Dieta Hiperlipídica , Estradiol/sangue , Estradiol/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Deleção de Genes , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Inflamação/patologia , Lipídeos/toxicidade , Lipoproteínas VLDL/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Formil Peptídeo/deficiência , Regulação para Cima/efeitos dos fármacos
14.
Dev Reprod ; 25(4): 279-291, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35141453

RESUMO

Hair loss is one of the most common chronic diseases, with a detrimental effect on a patient's psychosocial life. Hair loss results from damage to the hair follicle (HF) and/or hair regeneration cycle. Various damaging factors, such as hereditary, inflammation, and aging, impair hair regeneration by inhibiting the activation of hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs). Formyl peptide receptor 2 (FPR2) regulates the inflammatory response and the activity of various types of stem cells, and has recently been reported to have a protective effect on hair loss. Given that stem cell activity is the driving force for hair regeneration, we hypothesized that FPR2 influences hair regeneration by mediating HFSC activity. To prove this hypothesis, we investigated the role of FPR2 in hair regeneration using Fpr2 knockout (KO) mice. Fpr2 KO mice were found to have excessive hair loss and abnormal HF structures and skin layer construction compared to wild-type (WT) mice. The levels of Sonic hedgehog (Shh) and ß-catenin, which promote HF regeneration, were significantly decreased, and the expression of bone morphogenetic protein (Bmp)2/4, an inhibitor of the anagen phase, was significantly increased in Fpr2 KO mice compared to WT mice. The proliferation of HFSCs and DPCs was significantly lower in Fpr2 KO mice than in WT mice. These findings demonstrate that FPR2 impacts signaling molecules that regulate HF regeneration, and is involved in the proliferation of HFSCs and DPCs, exerting a protective effect on hair loss.

15.
Biomedicines ; 9(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34829827

RESUMO

Liver fibrosis is a common feature of chronic liver disease. Activated hepatic stellate cells (HSCs) are the main drivers of extracellular matrix accumulation in liver fibrosis. Hence, a strategy for regulating HSC activation is crucial in treating liver fibrosis. Mesenchymal stem cells (MSCs) are multipotent stem cells derived from various post-natal organs. Therapeutic approaches involving MSCs have been studied extensively in various diseases, including liver disease. MSCs modulate hepatic inflammation and fibrosis and/or differentiate into hepatocytes by interacting directly with immune cells, HSCs, and hepatocytes and secreting modulators, thereby contributing to reduced liver fibrosis. Cell-free therapy including MSC-released secretomes and extracellular vesicles has elicited extensive attention because they could overcome MSC transplantation limitations. Herein, we provide basic information on hepatic fibrogenesis and the therapeutic potential of MSCs. We also review findings presenting the effects of MSC itself and MSC-based cell-free treatments in liver fibrosis, focusing on HSC activation. Growing evidence supports the anti-fibrotic function of either MSC itself or MSC modulators, although the mechanism underpinning their effects on liver fibrosis has not been established. Further studies are required to investigate the detailed mechanism explaining their functions to expand MSC therapies using the cell itself and cell-free treatments for liver fibrosis.

16.
BMB Rep ; 53(8): 425-430, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32317078

RESUMO

Tumor necrosis factor-inducible gene 6 protein (TSG-6) is a cytokine secreted by mesenchymal stem cells (MSCs) and regulates MSC stemness. We previously reported that TSG-6 changes primary human hepatic stellate cells (pHSCs) into stem-like cells by activating yes-associated protein-1 (YAP-1). However, the molecular mechanism behind the reprogramming action of TSG-6 in pHSCs remains unknown. Cluster of differentiation 44 (CD44) is a transmembrane protein that has multiple functions depending on the ligand it is binding, and it is involved in various signaling pathways, including the Wnt/ß-catenin pathway. Given that ß-catenin influences stemness and acts downstream of CD44, we hypothesized that TSG-6 interacts with the CD44 receptor and stimulates ß-catenin to activate YAP-1 during TSG-6-mediated transdifferentiation of HSCs. Immunoprecipitation assays showed the interaction of TSG-6 with CD44, and immunofluorescence staining analyses revealed the colocalization of TSG-6 and CD44 at the plasma membrane of TSG-6-treated pHSCs. In addition, TSG-6 treatment upregulated the inactive form of phosphorylated glycogen synthase kinase (GSK)-3ß, which is a negative regulator of ß-catenin, and promoted nuclear accumulation of active/nonphosphorylated ß-catenin, eventually leading to the activation of YAP-1. However, CD44 suppression in pHSCs following CD44 siRNA treatment blocked the activation of ß-catenin and YAP-1, which inhibited the transition of TSG-6-treated HSCs into stem-like cells. Therefore, these findings demonstrate that TSG-6 interacts with CD44 and activates ß-catenin and YAP-1 during the conversion of TSG-6-treated pHSCs into stem-like cells, suggesting that this novel pathway is an effective therapeutic target for controlling liver disease. [BMB Reports 2020; 53(8): 425-430].


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Estreladas do Fígado/metabolismo , Receptores de Hialuronatos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Moléculas de Adesão Celular/genética , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Estreladas do Fígado/fisiologia , Humanos , Células-Tronco Mesenquimais/citologia , Fosfoproteínas/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas de Sinalização YAP , beta Catenina/metabolismo
17.
Cells ; 8(10)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31619023

RESUMO

Nonalcoholic fatty liver disease (NAFLD) caused by fat accumulation in the liver is globally the most common cause of chronic liver disease. Simple steatosis can progress to nonalcoholic steatohepatitis (NASH), a more severe form of NAFLD. The most potent driver for NASH is hepatocyte death induced by lipotoxicity, which triggers inflammation and fibrosis, leading to cirrhosis and/or liver cancer. Despite the significant burden of NAFLD, there is no therapy for NAFLD/NASH. Accumulating evidence indicates gender-related NAFLD progression. A higher incidence of NAFLD is found in men and postmenopausal women than premenopausal women, and the experimental results, showing protective actions of estradiol in liver diseases, suggest that estrogen, as the main female hormone, is associated with the progression of NAFLD/NASH. However, the mechanism explaining the functions of estrogen in NAFLD remains unclear because of the lack of reliable animal models for NASH, the imbalance between the sexes in animal experiments, and subsequent insufficient results. Herein, we reviewed the pathogenesis of NAFLD/NASH focused on gender and proposed a feasible association of estradiol with NAFLD/NASH based on the findings reported thus far. This review would help to expand our knowledge of the gender differences in NAFLD and for developing gender-based treatment strategies for NAFLD/NASH.


Assuntos
Estrogênios/farmacologia , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Progressão da Doença , Estrogênios/metabolismo , Feminino , Hepatócitos , Humanos , Inflamação/patologia , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fatores Sexuais
18.
Biomaterials ; 219: 119375, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31374480

RESUMO

Liver fibrosis is a major characteristic of liver disease. When the liver is damaged, quiescent hepatic stellate cells (HSCs) transdifferentiate into proliferative myofibroblastic/activated HSCs, which are the main contributors to liver fibrosis. Hence, a strategy for regulating HSC activation is important in the treatment of liver disease. Tumor necrosis factor-inducible gene 6 protein (TSG-6), a cytokine released from mesenchymal stem cells (MSCs), influences MSC stemness. Therefore, we investigated the biological effect of TSG-6 on HSCs. Human primary HSCs treated with TSG-6 showed significant downregulation of HSC activation markers and upregulation of senescence markers. TSG-6 promoted these cells to express stem cell markers and form spherical organoids, which exhibited elevated expression of stemness-related genes. These organoids differentiated into functional hepatocytic cells under specific culture conditions. Organoids derived from TSG-6-treated HSCs improved livers in organoid transplant mice subjected to CCl4 treatment (which induces liver fibrosis). Furthermore, HSC transdifferentiation by TSG-6 was mediated by Yes-associated protein 1. These findings demonstrate that TSG-6 induces the conversion of HSCs into stem cell-like cells in vitro and that organoids derived from TSG-6-treated HSCs can restore fibrotic liver, suggesting that direct reprogramming of HSCs by TSG-6 can be a useful strategy to control liver disease.


Assuntos
Moléculas de Adesão Celular/farmacologia , Reprogramação Celular , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Fígado/patologia , Células-Tronco/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Linhagem Celular , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Fígado/fisiopatologia , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Organoides/efeitos dos fármacos , Organoides/metabolismo , Células-Tronco/efeitos dos fármacos
19.
Cell Death Dis ; 9(7): 721, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915286

RESUMO

Healthy livers have a remarkable regenerative capacity for reconstructing functional hepatic parenchyma after 70% partial hepatectomy (PH). Hepatocytes, usually quiescent in normal healthy livers, proliferate to compensate for hepatic loss after PH. However, the mechanism of hepatocyte involvement in liver regeneration remains unclear. Hedgehog (Hh) pathway plays an important role in tissue reconstitution by regulating epithelial-to-mesenchymal transition (EMT) in liver disease. MicroRNA (miRNA) is involved in cell proliferation and differentiation during embryonic development and carcinogenesis. It was recently reported that miR-378 inhibits transdifferentiation of hepatic stellate cells into myofibroblasts by suppressing Gli-Krüppel family member 3 (Gli3), the Hh-target gene. We hypothesized that miR-378 influences EMT in hepatocytes by interfering with Hh signaling during liver regeneration. As hepatocytes were highly proliferative after PH in mice, miR-378 and epithelial marker, Ppar-g or E-cadherin were downregulated, whereas both Hh activators, Smoothened (Smo) and Gli3, and the EMT-inducing genes, Tgfb, Snail and Vimentin, were upregulated in the regenerating livers and in hepatocytes isolated from them. Compared to cells with or without scramble miRNA, primary hepatocytes transfected with miR-378 inhibitor contained higher levels of Gli3 with increased expression of the EMT-promoting genes, Tgfb, Snail, Col1a1, and Vimentin, suggesting that miR-378 influenced EMT in hepatocytes. Smo-depleted hepatocytes isolated from PH livers of Smo-flox mice showed downregulation of EMT-promoting genes and Gli3, with upregulation of miR-378 and E-cadherin compared to Smo-expressing hepatocytes from PH liver. In addition, delivery hepatocyte-specific AAV8 viral vector bearing Cre recombinase into Smo-flox mice impeded EMT in Smo-suppressed hepatocytes of PH liver, indicating that Smo is critical for regulating hepatocyte EMT. Furthermore, the application of miR-378 mimic into mice with PH delayed liver regeneration by interrupting hepatocyte EMT. In conclusion, our results demonstrate that miR-378 is involved in hepatocyte EMT by regulating Hh signaling during liver regeneration.


Assuntos
Transição Epitelial-Mesenquimal/genética , Hepatócitos/metabolismo , Regeneração Hepática/genética , MicroRNAs/fisiologia , Receptor Smoothened/genética , Animais , Proliferação de Células/genética , Proteínas Hedgehog/genética , Fígado/metabolismo , Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/genética
20.
Exp Mol Med ; 49(9): e380, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28935975

RESUMO

Tumor necrosis factor-inducible gene 6 protein (TSG-6) has recently been shown to protect the liver from acute damage. However, the mechanism underlying the effect of TSG-6 on the liver remains unclear. Autophagy is a catabolic process that targets cell components to lysosomes for degradation, and its functions are reported to be dysregulated in liver diseases. Here we investigate whether TSG-6 promotes liver regeneration by inducing autophagic clearance in damaged livers. Mice fed a methionine choline-deficient diet supplemented with 0.1% ethionine (MCDE) for 2 weeks were injected with TSG-6 (the M+TSG-6 group) or saline (the M+V group) and fed with MCDE for 2 additional weeks. Histomorphological evidence of injury and increased levels of liver enzymes were evident in MCDE-treated mice, whereas these symptoms were ameliorated in the M+TSG-6 group. Livers from this group contained less active caspase-3 and more Ki67-positive hepatocytic cells than the M+V group. The autophagy markers ATG3, ATG7, LC3-II, LAMP2A and RAB7 were elevated in the M+TSG-6 group compared with those in the M+V group. Immunostaining for LC3 and RAB7 and electron microscopy analysis showed the accumulation of autophagy structures in the M+TSG-6 group. TSG-6 also blocked both tunicamycin- and palmitate-induced apoptosis of hepatocytes and increased their viability by inducing autophagy formation in these cells. An autophagy inhibitor suppressed TSG-6-mediated autophagy in the injured hepatocytes and livers of MCDE-treated mice. These results therefore demonstrate that TSG-6 protects hepatocytes from damage by enhancing autophagy influx and contributes to liver regeneration, suggesting that TSG-6 has therapeutic potential for the treatment of liver diseases.


Assuntos
Autofagia/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Hepatopatias/genética , Hepatopatias/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/genética , Doença Crônica , Modelos Animais de Doenças , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/ultraestrutura , Hepatopatias/mortalidade , Hepatopatias/patologia , Regeneração Hepática/genética , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA